Crossing Reduction in Circular Layouts | SpringerLink
Skip to main content

Crossing Reduction in Circular Layouts

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

We propose a two-phase heuristic for crossing reduction in circular layouts. While the first algorithm uses a greedy policy to build a good initial layout, an adaptation of the sifting heuristic for crossing reduction in layered layouts is used for local optimization in the second phase. Both phases are conceptually simpler than previous heuristics, and our extensive experimental results indicate that they also yield fewer crossings. An interesting feature is their straightforward generalization to the weighted case.

Research partially supported by DFG under grants Wa 654/13-2 and Br 2158/1-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baur, M., Brandes, U.: Crossing reduction in circular layouts. Technical Report 2004-14, Universität Karlsruhe (TH), Fakultät für Informatik (August 2004)

    Google Scholar 

  2. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Computational Geometry: Theory and Applications 7, 303–326 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Doğrusöz, U., Madden, B., Madden, P.: Circular layout in the Graph Layout Toolkit. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 92–100. Springer, Heidelberg (1997)

    Google Scholar 

  4. Eades, P., Kelly, D.: Heuristics for reducing crossings in 2-layered networks. Ars Combinatoria 21(A), 89–98 (1986)

    MathSciNet  Google Scholar 

  5. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. He, H., Sýkora, O.: New circular drawing algorithms. Unpublished manuscript

    Google Scholar 

  7. Mäkinen, E.: On circular layouts. International Journal of Computer Mathematics 24, 29–37 (1988)

    Article  Google Scholar 

  8. Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NPcompleteness of a computer network layout problem. In: Proc. IEEE Intl. Symp. Circuits and Systems, 292–295 (1987)

    Google Scholar 

  9. Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline crossing minimization. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 217–224. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  11. Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Information Processing Letters 9(5), 229–232 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: Proc. IEEE Intl. Conf. Computer Aided Design (ICCAD 1993), pp. 42–47 (1993)

    Google Scholar 

  13. Shahrokhi, F., Sýkora, O., László, L., Székely, A., Vrto, I.: Book embeddings and crossing numbers. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 256–268. Springer, Heidelberg (1995)

    Google Scholar 

  14. Six, J.M., Tollis, I.G.: Circular drawings of biconnected graphs. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 57–73. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baur, M., Brandes, U. (2004). Crossing Reduction in Circular Layouts. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics