Abstract
We consider the problem of estimating the Shannon capacity of a circulant graph C n,J of degree four with n vertices and chord length J, 2 ≤ J ≤ n, by computing its Lovász theta function θ(C n,J ). We present an algorithm that takes O(J) operations if J is an odd number, and O(n/J) operations if J is even. On the considered class of graphs our algorithm strongly outperforms the known algorithms for theta function computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inform. Theory IT-2, 8–19 (1956)
Haemers, W.: An upper bound for the Shannon capacity of a graph. Colloq. Math. Soc. János Bolyai 25, 267–272 (1978)
Rosenfeld, M.: On a problem of Shannon. Proc. Amer. Mat. Soc. 18, 315–319 (1967)
Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. on Inf. Theory 25, 1–7 (1979)
Brimkov, V.E., Codenotti, B., Crespi, V., Leoncini, M.: On the lovász number of certain circulant graphs. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 291–305. Springer, Heidelberg (2000)
Minc, H.: Permanental compounds and permanents of (0,1) circulants. Linear Algebra and its Applications 86, 11–46 (1987)
Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: A survey. J. of Parallel and Distributed Computing 24, 2–10 (1995)
Leighton, F.T.: Introduction to parallel algorithms and architecture: Arrays, trees, hypercubes. M. Kaufmann, San Francisco (1996)
Liton, B., Mans, B.: On isomorphic chordal rings. In: Proc. of the Seventh Australian Workshop on Combinatorial Algorithms (AWOCA 1996), Univ. of Sydney, BDCSTR- 508, 108-111 (1996)
Mans, B.: Optimal distributed algorithms in unlabel tori and chordal rings. J. of Parallel and Distributed Computing 46(1), 80–90 (1997)
Bouknight, W.J., Denenberg, S.A., McIntyre, D.E., Randall, J.M., Samel, A.H., Slotnick, D.L.: The Illiac IV System. Proc. IEEE 60(4), 369–378 (1972)
Wilkov, R.S.: Analysis and design of reliable computer networks. IEEE Trans. On Communications 20, 660–678 (1972)
Wong, C.K., Coppersmith, D.: A combinatorial problem related to multimodule memory organization. Journal of the ACM 21(3), 392–402 (1974)
Adám, A.: Research problem 2-10. J. Combinatorial Theory 393, 1109–1124 (1991)
Beivide, R., Herrada, E., Balcázar, J.L., Arruabarrena, A.: Optimal distance networks of low degree for parallel computers. IEEE Trans. on Computers C-30(10), 1109–1124 (1991)
Yang, Y., Funashashi, A., Jouraku, A., Nishi, H., Amano, H., Sueyoshi, T.: Recursive diagonal torus: an interconnection network for massively parallel computers. IEEE Trans. on Parallel and Distributed Systems 12(7), 701–715 (2001)
Huber, K.: Codes over tori. IEEE Trans. on Information Theory 43(2), 740–744 (1997)
Rosenfeld, A., Klette, R.: Digital straightness. Electronic Notes in Theoretical Computer Science vol. 46 (2001), http://www.elsevier.nl/locate/entcs,volume46.html
Dorst, L., Duin, R.P.W.: Spirograph theory: a framework for calculations on digitized straight lines. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 632–639 (1984)
Brimkov, V.E., Barneva, R.P., Klette, R., Straight, J.: Lovász theta-function of a class of graphs representing digital lines. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 285–295. Springer, Heidelberg (2004)
Alizadeh, F., et al.: SDPPACK user’s guide, http://www.cs.nyu.edu/faculty/overton/sdppack,sdppack.html
Berge, C.: Graphs, North-Holland Mathematical Library (1985)
Knuth, D.E.: The sandwich theorem. Electronic J. Combinatorics 1, 1–48 (1994)
Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optimization 5(1), 13–51 (1995)
Alon, N.: On the capacity of digraphs. European J. Combinatorics 19, 1–5 (1998)
Alon, N., Orlitsky, A.: Repeated communication and Ramsey graphs. IEEE Trans. on Inf. Theory 33, 1276–1289 (1995)
Ashley, J.J., Siegel, P.H.: A note on the Shannon Capacity of run-length-limited codes. IEEE Trans. on Inf. Theory IT-33, 601–605 (1987)
Farber, M.: An analogue of the Shannon capacity of a graph. SIAM J. on Alg. And Disc. Methods 7, 67–72 (1986)
Feige, U.: Randomized graph products, chromatic numbers, and the Lovász θ- function. In: Proc of the 27th STOC, pp. 635–640 (1995)
Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. of ACM 31(1), 114–127 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brimkov, V.E., Barneva, R.P., Klette, R., Straight, J. (2004). Efficient Computation of the Lovász Theta Function for a Class of Circulant Graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)