Exact (Exponential) Algorithms for the Dominating Set Problem | SpringerLink
Skip to main content

Exact (Exponential) Algorithms for the Dominating Set Problem

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

We design fast exact algorithms for the problem of computing a minimum dominating set in undirected graphs. Since this problem is NP-hard, it comes with no big surprise that all our time complexities are exponential in the number n of vertices. The contribution of this paper are ‘nice’ exponential time complexities that are bounded by functions of the form c n with reasonably small constants c<2: For arbitrary graphs we get a time complexity of 1.93782n. And for the special cases of split graphs, bipartite graphs, and graphs of maximum degree three, we reach time complexities of 1.41422n, 1.73206n, and 1.51433n, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2−2/(k+1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289, 69–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)

    Google Scholar 

  4. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 462–470. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branchwidth and exponential speed-up. In: Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 168–177 (2003)

    Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Co., San Francisco (1979)

    MATH  Google Scholar 

  7. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  8. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker Inc., New York (1998)

    MATH  Google Scholar 

  9. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: Advanced Topics. Marcel Dekker Inc., New York (1998)

    MATH  Google Scholar 

  10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63, 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Johnson, D.S., Szegedy, M.: What are the least tractable instances of max independent set? In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 927–928 (1999)

    Google Scholar 

  12. Reed, B.: Paths, stars and the number three. Combinatorics, Probability and Computing 5, 277–295 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7, 425–440 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Kratsch, D., Woeginger, G.J. (2004). Exact (Exponential) Algorithms for the Dominating Set Problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics