Abstract
We design fast exact algorithms for the problem of computing a minimum dominating set in undirected graphs. Since this problem is NP-hard, it comes with no big surprise that all our time complexities are exponential in the number n of vertices. The contribution of this paper are ‘nice’ exponential time complexities that are bounded by functions of the form c n with reasonably small constants c<2: For arbitrary graphs we get a time complexity of 1.93782n. And for the special cases of split graphs, bipartite graphs, and graphs of maximum degree three, we reach time complexities of 1.41422n, 1.73206n, and 1.51433n, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)
Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2−2/(k+1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289, 69–83 (2002)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)
Eppstein, D.: Small maximal independent sets and faster exact graph coloring. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 462–470. Springer, Heidelberg (2001)
Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branchwidth and exponential speed-up. In: Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 168–177 (2003)
Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Co., San Francisco (1979)
Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker Inc., New York (1998)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: Advanced Topics. Marcel Dekker Inc., New York (1998)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63, 512–530 (2001)
Johnson, D.S., Szegedy, M.: What are the least tractable instances of max independent set? In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 927–928 (1999)
Reed, B.: Paths, stars and the number three. Combinatorics, Probability and Computing 5, 277–295 (1996)
Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7, 425–440 (1986)
Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fomin, F.V., Kratsch, D., Woeginger, G.J. (2004). Exact (Exponential) Algorithms for the Dominating Set Problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)