Coloring a Graph Using Split Decomposition | SpringerLink
Skip to main content

Coloring a Graph Using Split Decomposition

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

  • 1498 Accesses

Abstract

We show how to use split decomposition to compute the weighted clique number and the chromatic number of a graph and we apply these results to some classes of graphs. In particular we present an O(n 2 m) algorithm to compute the chromatic number for all those graphs having a split decomposition in which every prime graph is an induced subgraph of either a C k or a \(\overline{C_k}\) for some k≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bixby, R.: A composition for perfect graphs. Annals of Discrete Math. 21, 221–224 (1984)

    MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Brandstädt, A., Kratsch, D., Rao, M., Spinrad, J.P.: Linear time algorithms for some NP-complete problems on (P 5,gem)-free graphs. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 61–72. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Bodlaender, H.L., Jansen, K.: On the complexity of the maximum cut problem. Nord. J. Comput. 7, 14–31 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-in with the modular decomposition. Algorithmica 36, 375–408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brandstädt, A., Kratsch, D.: On the structure of (P5,gem)-free graphs, Manuscript (2002), http://www.informatik.uni-rostock.de/(en)/ ab/ps-files/p5gemdam.ps

    Google Scholar 

  7. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect graph theorem, Manuscript (2002), http://www.math.gatech.edu/~thomas/spgc.ps.gz

  8. Cicerone, S., Di Stefano, D.: On the extension of bipartite graphs to parity graphs. Discrete Applied Math. 95, 181–195 (1999)

    Article  MATH  Google Scholar 

  9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33, 125–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  11. Cunningham, W.: Decomposition of directed graphs. SIAM Journal on Algebraic and Discrete Methods 3, 214–228 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. Journal of Algorithms 36, 205–240 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Gabor, C.P., Hsu, W.L., Supowit, K.J.: Recognizing circle graphs in polynomial time. Journal of the ACM 36, 435–473 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Annals of Discrete Math. 21, 325–356 (1984)

    Google Scholar 

  16. Hammer, P., Maffray, F.: Completely separable graphs. Discrete Applied Math 27, 85–99 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hoàng, C.T.: Efficient algorithms for minimum weighted colouring of some classes of perfect graphs. Discrete Applied Math. 55, 133–143 (1994)

    Article  MathSciNet  Google Scholar 

  18. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Math. 126, 197–221 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ma, T.-H., Spinrad, J.: An O(n2) algorithm for undirected split decomposition. Journal of Algorithms 16, 154–160 (1994)

    Article  MathSciNet  Google Scholar 

  20. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Math. 19, 257–356 (1984)

    Google Scholar 

  22. Raschle, T., Simon, K.: On the P4-components of graphs. Discrete Applied Math 100, 215–235 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Spinrad, J.: Recognition of circle graphs. Journal of Algorithms 16, 264–282 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55, 221–232 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vanherpe, J.-M.: Décomposition et algorithmes efficaces sur les graphes, Ph.D. thesis, Université de Picardie, LaRIA (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rao, M. (2004). Coloring a Graph Using Split Decomposition. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics