Abstract
We show how to use split decomposition to compute the weighted clique number and the chromatic number of a graph and we apply these results to some classes of graphs. In particular we present an O(n 2 m) algorithm to compute the chromatic number for all those graphs having a split decomposition in which every prime graph is an induced subgraph of either a C k or a \(\overline{C_k}\) for some k≥ 3.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)
Bixby, R.: A composition for perfect graphs. Annals of Discrete Math. 21, 221–224 (1984)
Bodlaender, H.L., Brandstädt, A., Kratsch, D., Rao, M., Spinrad, J.P.: Linear time algorithms for some NP-complete problems on (P 5,gem)-free graphs. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 61–72. Springer, Heidelberg (2003)
Bodlaender, H.L., Jansen, K.: On the complexity of the maximum cut problem. Nord. J. Comput. 7, 14–31 (2000)
Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-in with the modular decomposition. Algorithmica 36, 375–408 (2003)
Brandstädt, A., Kratsch, D.: On the structure of (P5,gem)-free graphs, Manuscript (2002), http://www.informatik.uni-rostock.de/(en)/ ab/ps-files/p5gemdam.ps
Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect graph theorem, Manuscript (2002), http://www.math.gatech.edu/~thomas/spgc.ps.gz
Cicerone, S., Di Stefano, D.: On the extension of bipartite graphs to parity graphs. Discrete Applied Math. 95, 181–195 (1999)
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33, 125–150 (2000)
Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)
Cunningham, W.: Decomposition of directed graphs. SIAM Journal on Algebraic and Discrete Methods 3, 214–228 (1982)
Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. Journal of Algorithms 36, 205–240 (2000)
Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)
Gabor, C.P., Hsu, W.L., Supowit, K.J.: Recognizing circle graphs in polynomial time. Journal of the ACM 36, 435–473 (1989)
Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Annals of Discrete Math. 21, 325–356 (1984)
Hammer, P., Maffray, F.: Completely separable graphs. Discrete Applied Math 27, 85–99 (1990)
Hoàng, C.T.: Efficient algorithms for minimum weighted colouring of some classes of perfect graphs. Discrete Applied Math. 55, 133–143 (1994)
Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Math. 126, 197–221 (2003)
Ma, T.-H., Spinrad, J.: An O(n2) algorithm for undirected split decomposition. Journal of Algorithms 16, 154–160 (1994)
McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)
Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Math. 19, 257–356 (1984)
Raschle, T., Simon, K.: On the P4-components of graphs. Discrete Applied Math 100, 215–235 (2000)
Spinrad, J.: Recognition of circle graphs. Journal of Algorithms 16, 264–282 (1994)
Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55, 221–232 (1985)
Vanherpe, J.-M.: Décomposition et algorithmes efficaces sur les graphes, Ph.D. thesis, Université de Picardie, LaRIA (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rao, M. (2004). Coloring a Graph Using Split Decomposition. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)