Abstract
We argue that in a distributed context, such as the Semantic Web, ontology engineers and data creators often cannot control (or even imagine) the possible uses their data or ontologies might have. Therefore ontologies are unlikely to identify every useful or interesting classification possible in a problem domain, for example these might be of a personalised nature and only appropriate for a certain user in a certain context, or they might be of a different granularity than the initial scope of the ontology. We argue that machine learning techniques will be essential within the Semantic Web context to allow these unspecified classifications to be identified. In this paper we explore the application of machine learning methods to FOAF, highlighting the challenges posed by the characteristics of such data. Specifically, we use clustering to identify classes of people and inductive logic programming (ILP) to learn descriptions of these groups. We argue that these descriptions constitute re-usable, first class knowledge that is neither explicitly stated nor deducible from the input data. These new descriptions can be represented as simple OWL class restrictions or more sophisticated descriptions using SWRL. These are then suitable either for incorporation into future versions of ontologies or for on-the-fly use for personalisation tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American, 28–37 (2001)
Brickley, D., Guha, R.V.: Resource Description Framework (RDF) Schema Specification. W3c recommendation,World Wide Web Consortium (2000)
McGuinness, D.L., van Harmelen, F.: Web Ontology Language (OWL): Overview. W3c recommendation,World Wide Web Consortium (2003)
Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Specification. W3c recommendation, World Wide Web Consortium (1999)
Grimnes, G.A., Edwards, P., Preece, A.: Learning from Semantic Flora and Fauna. In: SemanticWeb Personalization Workshop, AAAI, San Jose (2004)
Vorhees, E.: Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. Information Processing & Management 22, 465–476 (1986)
Srinivasan, A.: The Aleph Manual (2001), http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
Horrocks, I., Patel-Scheider, P., Boley, H., Tabet, S., Groshof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML. DARPA DAML Program (2003)
Hamming, R.: Error Detecting and Error Correcting Codes. Bell System Techincal Journal 29, 147–160 (1950)
Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Comparison of Conceptual Graphs. In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS, vol. 1793, pp. 548–556. Springer, Heidelberg (2000)
Rasmussen, E.: Clustering Algorithms. In: Frakes, W., Baeza-Yates, R. (eds.) Information Retrieval: Data structures & Algorithms, Prentice-Hall, Englewood Cliffs (1992)
Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. In: Proceedings of Cooperative Intelligent Agents 2003, Helsinki, Finland (2003)
Zaki, M.J., Aggarwal, C.C.: XRules: An Effective Structural Classifier for XML Data. In: 9th International Conference on Knowledge Discovery and Data-mining, pp. 316–325 (2003)
Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: International Semantic Web Conference, pp. 264–278 (2002)
Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying Communities of Practice through Ontology Network Analysis. In: IEEE IS, pp. 18–25. IEEE, Los Alamitos (2003)
Middleton, S., Alani, H., Shadbolt, N., De Roure, D.: Exploiting Synergy Between Ontologies and Recommender Systems. In: 11th International WWW Conference, Semantic Web Workshop, pp. 41–50 (2002)
Middleton, S., Shadbolt, N., Roure, D.D.: Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)
Dolog, P., Henze, N., Nejdl, W., Sintek, M.: Towards the Adaptive Semantic Web. In: 1st Workshop on Principles and Practice of Semantic Web Reasoning, pp. 51–68 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grimnes, G.A., Edwards, P., Preece, A. (2004). Learning Meta-descriptions of the FOAF Network. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds) The Semantic Web – ISWC 2004. ISWC 2004. Lecture Notes in Computer Science, vol 3298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30475-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-30475-3_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23798-3
Online ISBN: 978-3-540-30475-3
eBook Packages: Springer Book Archive