Learning Meta-descriptions of the FOAF Network | SpringerLink
Skip to main content

Learning Meta-descriptions of the FOAF Network

  • Conference paper
The Semantic Web – ISWC 2004 (ISWC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3298))

Included in the following conference series:

Abstract

We argue that in a distributed context, such as the Semantic Web, ontology engineers and data creators often cannot control (or even imagine) the possible uses their data or ontologies might have. Therefore ontologies are unlikely to identify every useful or interesting classification possible in a problem domain, for example these might be of a personalised nature and only appropriate for a certain user in a certain context, or they might be of a different granularity than the initial scope of the ontology. We argue that machine learning techniques will be essential within the Semantic Web context to allow these unspecified classifications to be identified. In this paper we explore the application of machine learning methods to FOAF, highlighting the challenges posed by the characteristics of such data. Specifically, we use clustering to identify classes of people and inductive logic programming (ILP) to learn descriptions of these groups. We argue that these descriptions constitute re-usable, first class knowledge that is neither explicitly stated nor deducible from the input data. These new descriptions can be represented as simple OWL class restrictions or more sophisticated descriptions using SWRL. These are then suitable either for incorporation into future versions of ontologies or for on-the-fly use for personalisation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American, 28–37 (2001)

    Google Scholar 

  2. Brickley, D., Guha, R.V.: Resource Description Framework (RDF) Schema Specification. W3c recommendation,World Wide Web Consortium (2000)

    Google Scholar 

  3. McGuinness, D.L., van Harmelen, F.: Web Ontology Language (OWL): Overview. W3c recommendation,World Wide Web Consortium (2003)

    Google Scholar 

  4. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Specification. W3c recommendation, World Wide Web Consortium (1999)

    Google Scholar 

  5. Grimnes, G.A., Edwards, P., Preece, A.: Learning from Semantic Flora and Fauna. In: SemanticWeb Personalization Workshop, AAAI, San Jose (2004)

    Google Scholar 

  6. Vorhees, E.: Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. Information Processing & Management 22, 465–476 (1986)

    Article  Google Scholar 

  7. Srinivasan, A.: The Aleph Manual (2001), http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

  8. Horrocks, I., Patel-Scheider, P., Boley, H., Tabet, S., Groshof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML. DARPA DAML Program (2003)

    Google Scholar 

  9. Hamming, R.: Error Detecting and Error Correcting Codes. Bell System Techincal Journal 29, 147–160 (1950)

    MathSciNet  Google Scholar 

  10. Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Comparison of Conceptual Graphs. In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS, vol. 1793, pp. 548–556. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Rasmussen, E.: Clustering Algorithms. In: Frakes, W., Baeza-Yates, R. (eds.) Information Retrieval: Data structures & Algorithms, Prentice-Hall, Englewood Cliffs (1992)

    Google Scholar 

  12. Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. In: Proceedings of Cooperative Intelligent Agents 2003, Helsinki, Finland (2003)

    Google Scholar 

  13. Zaki, M.J., Aggarwal, C.C.: XRules: An Effective Structural Classifier for XML Data. In: 9th International Conference on Knowledge Discovery and Data-mining, pp. 316–325 (2003)

    Google Scholar 

  14. Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: International Semantic Web Conference, pp. 264–278 (2002)

    Google Scholar 

  15. Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying Communities of Practice through Ontology Network Analysis. In: IEEE IS, pp. 18–25. IEEE, Los Alamitos (2003)

    Google Scholar 

  16. Middleton, S., Alani, H., Shadbolt, N., De Roure, D.: Exploiting Synergy Between Ontologies and Recommender Systems. In: 11th International WWW Conference, Semantic Web Workshop, pp. 41–50 (2002)

    Google Scholar 

  17. Middleton, S., Shadbolt, N., Roure, D.D.: Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)

    Article  Google Scholar 

  18. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: Towards the Adaptive Semantic Web. In: 1st Workshop on Principles and Practice of Semantic Web Reasoning, pp. 51–68 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grimnes, G.A., Edwards, P., Preece, A. (2004). Learning Meta-descriptions of the FOAF Network. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds) The Semantic Web – ISWC 2004. ISWC 2004. Lecture Notes in Computer Science, vol 3298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30475-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30475-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23798-3

  • Online ISBN: 978-3-540-30475-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics