Model Identification | SpringerLink
Skip to main content

Model Identification

  • Reference work entry
Springer Handbook of Robotics

Abstract

This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.

For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.

Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 39925
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BLUE:

best linear unbiased estimator

DH:

Denavit–Hartenberg

DOF:

degree of freedom

LVDT:

linear variable differential transformer

References

  1. P.Z. Marmarelis, V.Z. Marmarelis: Analysis of Physiological Systems (Plenum, London 1978)

    Google Scholar 

  2. C.W. Wampler, J.M. Hollerbach, T. Arai: An implicit loop method for kinematic calibration and its application to closed-chain mechanisms, IEEE Trans. Robot. Autom. 11, 710–724 (1995)

    Article  Google Scholar 

  3. J.P. Norton: An Introduction to Identification (Academic, London 1986)

    MATH  Google Scholar 

  4. G.H. Golub, C.F. Van Loan: Matrix Computations (Johns Hopkins Univ. Press, Baltimore 1989)

    MATH  Google Scholar 

  5. H. West, E. Papadopoulos, S. Dubowsky, H. Cheah: A method for estimating the mass properties of a manipulator by measuring the reaction moments at its base, Proc. IEEE Int. Conf. Robot. Autom., Scottsdale (IEEE Computer Society Press, Washington 1989) pp. 1510–1516

    Google Scholar 

  6. R.P. Paul: Robot Manipulators: Mathematics, Programming, and Control (MIT Press, Cambridge 1981)

    Google Scholar 

  7. S.A. Hayati, M. Mirmirani: Improving the absolute positioning accuracy of robot manipulators, J. Robot. Syst. 2, 397–413 (1985)

    Article  Google Scholar 

  8. J.M. Hollerbach, C.W. Wampler: The calibration index and taxonomy of kinematic calibration methods, Int. J. Robot. Res. 15, 573–591 (1996)

    Article  Google Scholar 

  9. A. Goswami, A. Quaid, M. Peshkin: Identifying robot parameters using partial pose information, IEEE Contr. Syst. 13, 6–14 (1993)

    Article  Google Scholar 

  10. M.R. Driels, W.E. Swayze: Automated partial pose measurement system for manipulator calibration experiments, IEEE Trans. Robot. Autom. 10, 430–440 (1994)

    Article  Google Scholar 

  11. G.-R. Tang, L.-S. Liu: Robot calibration using a single laser displacement meter, Mechatronics 3, 503–516 (1993)

    Article  Google Scholar 

  12. D.E. Whitney, C.A. Lozinski, J.M. Rourke: Industrial robot forward calibration method and results, ASME J. Dyn. Syst. Meas. Contr. 108, 1–8 (1986)

    Article  MATH  Google Scholar 

  13. B.W. Mooring, Z.S. Roth, M.R. Driels: Fundamentals of Manipulator Calibration (Wiley Interscience, New York 1991)

    Google Scholar 

  14. K. Lau, R. Hocken, L. Haynes: Robot performance measurements using automatic laser tracking techniques, Robot. Comput.-Integr. Manuf. 2, 227–236 (1985)

    Article  Google Scholar 

  15. C.H. An, C.H. Atkeson, J.M. Hollerbach: Model-Based Control of a Robot Manipulator (MIT Press, Cambridge 1988)

    Google Scholar 

  16. M. Vincze, J.P. Prenninger, H. Gander: A laser tracking system to measure position and orientation of robot end effectors under motion, Int. J. Robot. Res. 13, 305–314 (1994)

    Article  Google Scholar 

  17. J.M. McCarthy: Introduction to Theoretical Kinematics (MIT Press, Cambridge 1990)

    Google Scholar 

  18. D.J. Bennet, J.M. Hollerbach: Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive endpoint constraints, IEEE Trans. Robot. Autom. 7, 597–606 (1991)

    Article  Google Scholar 

  19. W.S. Newman, D.W. Osborn: A new method for kinematic parameter calibration via laser line tracking, Proc. IEEE Int. Conf. Robot. Autom., Atlanta, Vol. 2 (IEEE Computer Society Press, Washington 1993) pp. 160–165

    Google Scholar 

  20. X.-L. Zhong, J.M. Lewis: A new method for autonomous robot calibration, Proc. IEEE Int. Conf. Robot. Autom., Nagoya (IEEE Computer Society Press, Washington 1995) pp. 1790–1795

    Google Scholar 

  21. J.M. Hollerbach, D.M. Lokhorst: Closed-loop kinematic calibration of the RSI 6-DOF hand controller, IEEE Trans. Robot. Autom. 11, 352–359 (1995)

    Article  Google Scholar 

  22. A. Nahvi, J.M. Hollerbach, V. Hayward: Closed-loop kinematic calibration of a parallel-drive shoulder joint, Proc. IEEE Int. Conf. Robot. Autom., San Diego (IEEE Computer Society Press, Washington 1994) pp. 407–412

    Google Scholar 

  23. O. Masory, J. Wang, H. Zhuang: On the accuracy of a Stewart platform – part II Kinematic calibration and compensation, Proc. IEEE Int. Conf. Robot. Autom., Atlanta (IEEE Computer Society Press, Washington 1994) pp. 725–731

    Google Scholar 

  24. M. Gautier: Dynamic identification of robots with power model, Proc. IEEE Int. Conf. Robot. Autom. (Albuquerque 1997) pp. 1922–1927

    Google Scholar 

  25. B. Armstrong-Helouvry: Control of Machines with Friction (Kluwer Academic, Boston 1991)

    MATH  Google Scholar 

  26. B. Armstrong-Helouvry, P. Dupont, C. Canudas de Wit: A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica 30, 1083–1138 (1994)

    Article  MATH  Google Scholar 

  27. F. Aghili, J.M. Hollerbach, M. Buehler: A modular and high-precision motion control system with an integrated motor, IEEE/ASME Trans. Mechatron. 12, 317–329 (2007)

    Article  Google Scholar 

  28. W.S. Newman, J.J. Patel: Experiments in torque control of the Adept One robot, Proc. IEEE Int. Conf. Robot. Autom. (Sacramento 1991) pp. 1867–1872

    Google Scholar 

  29. W. Khalil, E. Dombre: Modeling, Identification and Control of Robots (Taylor Francis, New York 2002)

    Google Scholar 

  30. W. Khalil, O. Ibrahim: General solution for the dynamic modeling of parallel robots, J. Intell. Robot. Syst. 49, 19–37 (2007)

    Article  Google Scholar 

  31. S. Guegan, W. Khalil, P. Lemoine: Identification of the dynamic parameters of the Orthoglide, Proc. IEEE Int. Conf. Robot. Autom. (Taiwan 2003) pp. 3272–3277

    Google Scholar 

  32. K. Schroer: Theory of kinematic modelling and numerical procedures for robot calibration. In: Robot Calibration, ed. by R. Bernhardt, S.L. Albright (Chapman Hall, London 1993) pp. 157–196

    Google Scholar 

  33. H. Zhuang, Z.S. Roth: Camera-Aided Robot Calibration (CRC, Boca Raton 1996)

    Google Scholar 

  34. J.J. Dongarra, C.B. Mohler, J.R. Bunch, G.W. Stewart: LINPACK Userʼs Guide (SIAM, Philadelphia 1979)

    Google Scholar 

  35. M. Gautier, W. Khalil: Direct calculation of minimum set of inertial parameters of serial robots, IEEE Trans. Robot. Autom. RA-6, 368–373 (1990)

    Article  Google Scholar 

  36. W. Khalil, F. Bennis: Symbolic calculation of the base inertial parameters of closed-loop robots, Int. J. Robot. Res. 14, 112–128 (1995)

    Article  Google Scholar 

  37. W. Khalil, S. Guegan: Inverse and direct dynamic modeling of Gough–Stewart robots, Trans. Robot. Autom. 20, 754–762 (2004)

    Google Scholar 

  38. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes in C (Cambridge Univ. Press, Cambridge 1992)

    MATH  Google Scholar 

  39. C.L. Lawson, R.J. Hanson: Solving Least Squares Problems (Prentice Hall, Englewood Cliffs 1974)

    MATH  Google Scholar 

  40. P.R. Bevington, D.K. Robinson: Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York 1992)

    Google Scholar 

  41. B. Armstrong: On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics, Int. J. Robot. Res. 8, 28–48 (1989)

    Article  Google Scholar 

  42. J. Fiefer, J. Wolfowitz: Optimum designs in regression problems, Ann. Math. Stat. 30, 271–294 (1959)

    Article  Google Scholar 

  43. Y. Sun, J.M. Hollerbach: Observability index selection for robot calibration, Proc. IEEE Int. Conf. Robot. Autom. (Pasadena 2008), submitted

    Google Scholar 

  44. J.H. Borm, C.H. Menq: Determination of optimal measurement configurations for robot calibration based on observability measure, Int. J. Robot. Res. 10, 51–63 (1991)

    Article  Google Scholar 

  45. C.H. Menq, J.H. Borm, J.Z. Lai: Identification and observability measure of a basis set of error parameters in robot calibration, ASME J. Mechamissions Autom. Des. 111(4), 513–518 (1989)

    Article  Google Scholar 

  46. M. Gautier, W. Khalil: Exciting trajectories for inertial parameter identification, Int. J. Robot. Res. 11, 362–375 (1992)

    Article  Google Scholar 

  47. M.R. Driels, U.S. Pathre: Significance of observation strategy on the design of robot, J. Robot. Syst. 7, 197–223 (1990)

    Article  Google Scholar 

  48. A. Nahvi, J.M. Hollerbach: The noise amplification index for optimal pose selection in robot calibration, Proc. IEEE Int. Conf. Robot. Autom. (1996) pp. 647–654

    Google Scholar 

  49. D. Daney, B. Madeline, Y. Papegay: Choosing measurement poses for robot calibration with local convergence method and Tabu search, Int. J. Robot. Res. 24(6), 501–518 (2005)

    Article  Google Scholar 

  50. Y. Sun, J.M. Hollerbach: Active robot calibration algorithm, Proc. IEEE Int. Conf. Robot. Autom. (Pasadena 2008), submitted

    Google Scholar 

  51. T.J. Mitchell: An algorithm for the construction of D-Optimal experimental designs, Technometrics 16(2), 203–210 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Swevers, C. Ganseman, D.B. Tukel, J. De Schutter, H. Van Brussel: Optimal robot excitation and identification, IEEE Trans. Robot. Autom. 13, 730–740 (1997)

    Article  Google Scholar 

  53. P.O. Vandanjon, M. Gautier, P. Desbats: Identification of robots inertial parameters by means of spectrum analysis, Proc. IEEE Int. Conf. Robot. Autom. (Nagoya 1995) pp. 3033–3038

    Google Scholar 

  54. E. Walter, L. Pronzato: Identification of Parametric Models from Experimental Data (Springer, London 1997)

    MATH  Google Scholar 

  55. D.G. Luenberger: Optimization by Vector Space Methods (Wiley, New York 1969)

    MATH  Google Scholar 

  56. H.W. Sorenson: Least-squares estimation: from Gauss to Kalman, IEEE Spectrum 7, 63–68 (1970)

    Article  Google Scholar 

  57. Z. Roth, B.W. Mooring, B. Ravani: An overview of robot calibration, IEEE J. Robot. Autom. 3, 377–386 (1987)

    Article  Google Scholar 

  58. A.E. Bryson Jr., Y.-C. Ho: Applied Optimal Control (Hemisphere, Washington 1975)

    Google Scholar 

  59. D.J. Bennet, J.M. Hollerbach, D. Geiger: Autonomous robot calibration for hand-eye coordination, Int. J. Robot. Res. 10, 550–559 (1991)

    Article  Google Scholar 

  60. D.J. Bennet, J.M. Hollerbach, P.D. Henri: Kinematic calibration by direct estimation of the Jacobian matrix, Proc. IEEE Int. Conf. Robot. Autom. (Nice 1992) pp. 351–357

    Google Scholar 

  61. S. Van Huffel, J. Vandewalle: The Total Least Squares Problem: Computational Aspects and Analysis (SIAM, Philadelphia 1991)

    MATH  Google Scholar 

  62. P.T. Boggs, R.H. Byrd, R.B. Schnabel: A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Stat. Comput. 8, 1052–1078 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  63. W.A. Fuller: Measurement Error Models (Wiley, New York 1987)

    Book  MATH  Google Scholar 

  64. J.-M. Renders, E. Rossignol, M. Becquet, R. Hanus: Kinematic calibration and geometrical parameter identification for robots, IEEE Trans. Robot. Autom. 7, 721–732 (1991)

    Article  Google Scholar 

  65. G. Zak, B. Benhabib, R.G. Fenton, I. Saban: Application of the weighted least squares parameter estimation method for robot calibration, J. Mech. Des. 116, 890–893 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Hollerbach Prof , Wisama Khalil Prof or Maxime Gautier Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Hollerbach, J., Khalil, W., Gautier, M. (2008). Model Identification. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics