Abstract
This chapter discusses how to determine the kinematic parameters and the inertial parameters of robot manipulators. Both instances of model identification are cast into a common framework of least-squares parameter estimation, and are shown to have common numerical issues relating to the identifiability of parameters, adequacy of the measurement sets, and numerical robustness. These discussions are generic to any parameter estimation problem, and can be applied in other contexts.
For kinematic calibration, the main aim is to identify the geometric Denavit–Hartenberg (DH) parameters, although joint-based parameters relating to the sensing and transmission elements can also be identified. Endpoint sensing or endpoint constraints can provide equivalent calibration equations. By casting all calibration methods as closed-loop calibration, the calibration index categorizes methods in terms of how many equations per pose are generated.
Inertial parameters may be estimated through the execution of a trajectory while sensing one or more components of force/torque at a joint. Load estimation of a handheld object is simplest because of full mobility and full wrist force-torque sensing. For link inertial parameter estimation, restricted mobility of links nearer the base as well as sensing only the joint torque means that not all inertial parameters can be identified. Those that can be identified are those that affect joint torque, although they may appear in complicated linear combinations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- BLUE:
-
best linear unbiased estimator
- DH:
-
Denavit–Hartenberg
- DOF:
-
degree of freedom
- LVDT:
-
linear variable differential transformer
References
P.Z. Marmarelis, V.Z. Marmarelis: Analysis of Physiological Systems (Plenum, London 1978)
C.W. Wampler, J.M. Hollerbach, T. Arai: An implicit loop method for kinematic calibration and its application to closed-chain mechanisms, IEEE Trans. Robot. Autom. 11, 710–724 (1995)
J.P. Norton: An Introduction to Identification (Academic, London 1986)
G.H. Golub, C.F. Van Loan: Matrix Computations (Johns Hopkins Univ. Press, Baltimore 1989)
H. West, E. Papadopoulos, S. Dubowsky, H. Cheah: A method for estimating the mass properties of a manipulator by measuring the reaction moments at its base, Proc. IEEE Int. Conf. Robot. Autom., Scottsdale (IEEE Computer Society Press, Washington 1989) pp. 1510–1516
R.P. Paul: Robot Manipulators: Mathematics, Programming, and Control (MIT Press, Cambridge 1981)
S.A. Hayati, M. Mirmirani: Improving the absolute positioning accuracy of robot manipulators, J. Robot. Syst. 2, 397–413 (1985)
J.M. Hollerbach, C.W. Wampler: The calibration index and taxonomy of kinematic calibration methods, Int. J. Robot. Res. 15, 573–591 (1996)
A. Goswami, A. Quaid, M. Peshkin: Identifying robot parameters using partial pose information, IEEE Contr. Syst. 13, 6–14 (1993)
M.R. Driels, W.E. Swayze: Automated partial pose measurement system for manipulator calibration experiments, IEEE Trans. Robot. Autom. 10, 430–440 (1994)
G.-R. Tang, L.-S. Liu: Robot calibration using a single laser displacement meter, Mechatronics 3, 503–516 (1993)
D.E. Whitney, C.A. Lozinski, J.M. Rourke: Industrial robot forward calibration method and results, ASME J. Dyn. Syst. Meas. Contr. 108, 1–8 (1986)
B.W. Mooring, Z.S. Roth, M.R. Driels: Fundamentals of Manipulator Calibration (Wiley Interscience, New York 1991)
K. Lau, R. Hocken, L. Haynes: Robot performance measurements using automatic laser tracking techniques, Robot. Comput.-Integr. Manuf. 2, 227–236 (1985)
C.H. An, C.H. Atkeson, J.M. Hollerbach: Model-Based Control of a Robot Manipulator (MIT Press, Cambridge 1988)
M. Vincze, J.P. Prenninger, H. Gander: A laser tracking system to measure position and orientation of robot end effectors under motion, Int. J. Robot. Res. 13, 305–314 (1994)
J.M. McCarthy: Introduction to Theoretical Kinematics (MIT Press, Cambridge 1990)
D.J. Bennet, J.M. Hollerbach: Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive endpoint constraints, IEEE Trans. Robot. Autom. 7, 597–606 (1991)
W.S. Newman, D.W. Osborn: A new method for kinematic parameter calibration via laser line tracking, Proc. IEEE Int. Conf. Robot. Autom., Atlanta, Vol. 2 (IEEE Computer Society Press, Washington 1993) pp. 160–165
X.-L. Zhong, J.M. Lewis: A new method for autonomous robot calibration, Proc. IEEE Int. Conf. Robot. Autom., Nagoya (IEEE Computer Society Press, Washington 1995) pp. 1790–1795
J.M. Hollerbach, D.M. Lokhorst: Closed-loop kinematic calibration of the RSI 6-DOF hand controller, IEEE Trans. Robot. Autom. 11, 352–359 (1995)
A. Nahvi, J.M. Hollerbach, V. Hayward: Closed-loop kinematic calibration of a parallel-drive shoulder joint, Proc. IEEE Int. Conf. Robot. Autom., San Diego (IEEE Computer Society Press, Washington 1994) pp. 407–412
O. Masory, J. Wang, H. Zhuang: On the accuracy of a Stewart platform – part II Kinematic calibration and compensation, Proc. IEEE Int. Conf. Robot. Autom., Atlanta (IEEE Computer Society Press, Washington 1994) pp. 725–731
M. Gautier: Dynamic identification of robots with power model, Proc. IEEE Int. Conf. Robot. Autom. (Albuquerque 1997) pp. 1922–1927
B. Armstrong-Helouvry: Control of Machines with Friction (Kluwer Academic, Boston 1991)
B. Armstrong-Helouvry, P. Dupont, C. Canudas de Wit: A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica 30, 1083–1138 (1994)
F. Aghili, J.M. Hollerbach, M. Buehler: A modular and high-precision motion control system with an integrated motor, IEEE/ASME Trans. Mechatron. 12, 317–329 (2007)
W.S. Newman, J.J. Patel: Experiments in torque control of the Adept One robot, Proc. IEEE Int. Conf. Robot. Autom. (Sacramento 1991) pp. 1867–1872
W. Khalil, E. Dombre: Modeling, Identification and Control of Robots (Taylor Francis, New York 2002)
W. Khalil, O. Ibrahim: General solution for the dynamic modeling of parallel robots, J. Intell. Robot. Syst. 49, 19–37 (2007)
S. Guegan, W. Khalil, P. Lemoine: Identification of the dynamic parameters of the Orthoglide, Proc. IEEE Int. Conf. Robot. Autom. (Taiwan 2003) pp. 3272–3277
K. Schroer: Theory of kinematic modelling and numerical procedures for robot calibration. In: Robot Calibration, ed. by R. Bernhardt, S.L. Albright (Chapman Hall, London 1993) pp. 157–196
H. Zhuang, Z.S. Roth: Camera-Aided Robot Calibration (CRC, Boca Raton 1996)
J.J. Dongarra, C.B. Mohler, J.R. Bunch, G.W. Stewart: LINPACK Userʼs Guide (SIAM, Philadelphia 1979)
M. Gautier, W. Khalil: Direct calculation of minimum set of inertial parameters of serial robots, IEEE Trans. Robot. Autom. RA-6, 368–373 (1990)
W. Khalil, F. Bennis: Symbolic calculation of the base inertial parameters of closed-loop robots, Int. J. Robot. Res. 14, 112–128 (1995)
W. Khalil, S. Guegan: Inverse and direct dynamic modeling of Gough–Stewart robots, Trans. Robot. Autom. 20, 754–762 (2004)
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes in C (Cambridge Univ. Press, Cambridge 1992)
C.L. Lawson, R.J. Hanson: Solving Least Squares Problems (Prentice Hall, Englewood Cliffs 1974)
P.R. Bevington, D.K. Robinson: Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York 1992)
B. Armstrong: On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics, Int. J. Robot. Res. 8, 28–48 (1989)
J. Fiefer, J. Wolfowitz: Optimum designs in regression problems, Ann. Math. Stat. 30, 271–294 (1959)
Y. Sun, J.M. Hollerbach: Observability index selection for robot calibration, Proc. IEEE Int. Conf. Robot. Autom. (Pasadena 2008), submitted
J.H. Borm, C.H. Menq: Determination of optimal measurement configurations for robot calibration based on observability measure, Int. J. Robot. Res. 10, 51–63 (1991)
C.H. Menq, J.H. Borm, J.Z. Lai: Identification and observability measure of a basis set of error parameters in robot calibration, ASME J. Mechamissions Autom. Des. 111(4), 513–518 (1989)
M. Gautier, W. Khalil: Exciting trajectories for inertial parameter identification, Int. J. Robot. Res. 11, 362–375 (1992)
M.R. Driels, U.S. Pathre: Significance of observation strategy on the design of robot, J. Robot. Syst. 7, 197–223 (1990)
A. Nahvi, J.M. Hollerbach: The noise amplification index for optimal pose selection in robot calibration, Proc. IEEE Int. Conf. Robot. Autom. (1996) pp. 647–654
D. Daney, B. Madeline, Y. Papegay: Choosing measurement poses for robot calibration with local convergence method and Tabu search, Int. J. Robot. Res. 24(6), 501–518 (2005)
Y. Sun, J.M. Hollerbach: Active robot calibration algorithm, Proc. IEEE Int. Conf. Robot. Autom. (Pasadena 2008), submitted
T.J. Mitchell: An algorithm for the construction of D-Optimal experimental designs, Technometrics 16(2), 203–210 (1974)
J. Swevers, C. Ganseman, D.B. Tukel, J. De Schutter, H. Van Brussel: Optimal robot excitation and identification, IEEE Trans. Robot. Autom. 13, 730–740 (1997)
P.O. Vandanjon, M. Gautier, P. Desbats: Identification of robots inertial parameters by means of spectrum analysis, Proc. IEEE Int. Conf. Robot. Autom. (Nagoya 1995) pp. 3033–3038
E. Walter, L. Pronzato: Identification of Parametric Models from Experimental Data (Springer, London 1997)
D.G. Luenberger: Optimization by Vector Space Methods (Wiley, New York 1969)
H.W. Sorenson: Least-squares estimation: from Gauss to Kalman, IEEE Spectrum 7, 63–68 (1970)
Z. Roth, B.W. Mooring, B. Ravani: An overview of robot calibration, IEEE J. Robot. Autom. 3, 377–386 (1987)
A.E. Bryson Jr., Y.-C. Ho: Applied Optimal Control (Hemisphere, Washington 1975)
D.J. Bennet, J.M. Hollerbach, D. Geiger: Autonomous robot calibration for hand-eye coordination, Int. J. Robot. Res. 10, 550–559 (1991)
D.J. Bennet, J.M. Hollerbach, P.D. Henri: Kinematic calibration by direct estimation of the Jacobian matrix, Proc. IEEE Int. Conf. Robot. Autom. (Nice 1992) pp. 351–357
S. Van Huffel, J. Vandewalle: The Total Least Squares Problem: Computational Aspects and Analysis (SIAM, Philadelphia 1991)
P.T. Boggs, R.H. Byrd, R.B. Schnabel: A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. Stat. Comput. 8, 1052–1078 (1987)
W.A. Fuller: Measurement Error Models (Wiley, New York 1987)
J.-M. Renders, E. Rossignol, M. Becquet, R. Hanus: Kinematic calibration and geometrical parameter identification for robots, IEEE Trans. Robot. Autom. 7, 721–732 (1991)
G. Zak, B. Benhabib, R.G. Fenton, I. Saban: Application of the weighted least squares parameter estimation method for robot calibration, J. Mech. Des. 116, 890–893 (1994)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Hollerbach, J., Khalil, W., Gautier, M. (2008). Model Identification. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-30301-5_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23957-4
Online ISBN: 978-3-540-30301-5
eBook Packages: EngineeringEngineering (R0)