Abstract
Graph constraints and application conditions are most important for graph grammars and transformation systems in a large variety of application areas. Although different approaches have been presented in the literature already there is no adequate theory up to now which can be applied to different kinds of graphs and high-level structures. In this paper, we introduce an improved notion of graph constraints and application conditions and show under what conditions the basic results can be extended from graph transformation to high-level replacement systems. In fact, we use the new framework of adhesive HLR categories recently introduced as combination of HLR systems and adhesive categories. Our main results are the transformation of graph constraints into right application conditions and the transformation from right to left application conditions in this new framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bottoni, P., Koch, M., Parisi-Presicce, M., Taentzer, G.: Consistency checking and visualization of ocl constraints. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 294–308. Springer, Heidelberg (2000)
Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation. Part I: Basic concepts and double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, ch. 3, pp. 163–245. World Scientific, Singapore (1997)
Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)
Ehrig, H., Habel, A.: Graph grammars with application conditions. In: Rozenberg, G., Salomaa, A. (eds.) The Book of L, pp. 87–100. Springer, Berlin (1986)
Ehrig, H., Habel, A., Kreowski, H.-J., Presicce, F.P.: Parallelism and concurrency in high level replacement systems. Mathematical Structures in Computer Science 1, 361–404 (1991)
Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive highlevel replacement categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)
Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory of typed attributed graph transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)
Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundamenta Informaticae 26, 287–313 (1996)
Heckel, R., Wagner, A.: Ensuring consistency of conditional graph grammars — a constructive approach. In: SEGRAGRA 1995. Electronic Notes in Theoretical Computer Science, vol. 2, pp. 95–104 (1995)
Koch, M., Parisi-Presicce, F.: Describing policies with graph constraints and rules. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 223–238. Springer, Heidelberg (2002)
Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)
Plump, D.: Hypergraph rewriting: Critical pairs and undecidability of confluence. In: Term Graph Rewriting: Theory and Practice, pp. 201–213. John Wiley, New York (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ehrig, H., Ehrig, K., Habel, A., Pennemann, KH. (2004). Constraints and Application Conditions: From Graphs to High-Level Structures. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds) Graph Transformations. ICGT 2004. Lecture Notes in Computer Science, vol 3256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30203-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-30203-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23207-0
Online ISBN: 978-3-540-30203-2
eBook Packages: Springer Book Archive