3D Cognitive Map Construction by Active Stereo Vision in a Virtual World | SpringerLink
Skip to main content

3D Cognitive Map Construction by Active Stereo Vision in a Virtual World

  • Conference paper
Computer and Information Sciences - ISCIS 2004 (ISCIS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3280))

Included in the following conference series:

Abstract

In this study, a multi-scale phase based disparity algorithm is developed. This algorithm is then applied in a simulated world. In this world there is a virtual robot which has a stereo camera system simulated with the properties similar to human eyes and there are 3D virtual objects having predefined simple shapes. The virtual robot explores its environment intelligently based on some heuristics. Only stereo images rendered from the virtual world are supplied to the robot. The robot extracts depth information from the stereo images and when an object is seen, it investigates the object in detail and classifies the object from the estimated shapes of the object parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carneiro, G., Jepson, A.D.: Multi-scale phase-based local features. In: CVPR, Madison, WI, USA, pp. 736–743 (2003)

    Google Scholar 

  2. Erol, A.: Automatic fingerprint recognition. PhD. Thesis, Middle East Technical University, Electrical and Electronics Department, Ankara, Turkey (2001)

    Google Scholar 

  3. Freeman, W.T.: The design and use of steerable filters. IEEE Trans. Pattern Analysis and Machine Intelligence 13(9) (1991)

    Google Scholar 

  4. Karakaş, H.I.: Analytic Geometry

    Google Scholar 

  5. Li, G., Svensson, B.: Navigation with a focus directed mapping network. Autonomous Robots 7, 9–30 (1999)

    Article  Google Scholar 

  6. Marr, D.: Vision. W. H. Freeman, San Francisco (1982)

    Google Scholar 

  7. Matsumoto, Y., Inaba, M., Inoue, H.: Visual navigation using view-sequenced route representation. In: Proc. IEEE Int’l Conf. Robotics and Automation, vol. 1, pp. 83–88 (1996)

    Google Scholar 

  8. Okada, K., Kino, Y., Kanehino, F., Kuniyoshi, Y., Inaba, M., Inoue, H.: Rapid development system for humanoid vision-based behaviours with real-virtual common interface. In: Proceedings of the International Conference on Intelligent Robotics and Systems, Laussanne, Switzerland (2002)

    Google Scholar 

  9. Poggio, T., Sung, K.: Finding human faces with a Gaussian mixture distribution base face model. Computer Analysis of Image and Patterns, 432–439 (1995)

    Google Scholar 

  10. Prescott, T.J.: Spatial representation for navigation in animats. Adaptive Behaviour 4(2), 85–123 (1996)

    Article  Google Scholar 

  11. Rogers, D.F., Adams, J.A.: Mathematical elements for computer graphics, 2nd edn. McGraw-Hill International, New York (1990)

    Google Scholar 

  12. Sanger, T.D.: Stereo disparity computation using Gabor filters. Biol. Cybern. 59, 405–418 (1988)

    Article  Google Scholar 

  13. Terzopoulos, D., Rabie, T.F.: Animat vision: Active vision in artificial animals. Journal of Computer Vision Research, 2–19 (1997)

    Google Scholar 

  14. Tunçer, F.: Image Synthesis for depth estimation using stereo and focus analysis. M.Sc. Thesis, Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey (2002)

    Google Scholar 

  15. Ulusoy, I., Hancock, E.R., Halici, U.: Disparity using multi-scale phase. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, p. 320. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Ulusoy, I.: Active stereo vision for object recognition and cognitive map formation in a virtual world. In: CVPR (2003)

    Google Scholar 

  17. Ulusoy, I.: Active stereo vision: Depth perception for navigation, environmental map formation and object recognition. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey (2003)

    Google Scholar 

  18. Weber, M., Welling, M., Perona, P.: Towards automatic discovery of object categories. In: CVPR, vol. 2, pp. 101–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ulusoy, I., Halici, U., Leblebicioglu, K. (2004). 3D Cognitive Map Construction by Active Stereo Vision in a Virtual World. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds) Computer and Information Sciences - ISCIS 2004. ISCIS 2004. Lecture Notes in Computer Science, vol 3280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30182-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30182-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23526-2

  • Online ISBN: 978-3-540-30182-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics