Abstract
In this paper we present goal-directed deduction methods for Łukasiewicz infinite-valued logic Ł giving logic programming style algorithms which both have a logical interpretation and provide a suitable basis for implementation. We begin by considering a basic version with connections to calculi for other logics, then make refinements to obtain greater efficiency and termination properties, and to deal with further connectives and truth constants. We finish by considering applications of these algorithms to fuzzy logic programming.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued logic. Journal of Logic, Language and Information 9(1), 5–29 (2000)
Chang, C.C.: Algebraic analysis of many-valued logics. Transactions of the American Mathematical Society 88, 467–490 (1958)
Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many- Valued Reasoning. In: Trends in Logic, vol. 7, Kluwer, Dordrecht (1999)
Gabbay, D., Olivetti, N.: Goal-directed Proof Theory. Kluwer, Dordrecht (2000)
Gabbay, D., Olivetti, N.: Goal oriented deductions. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 9, pp. 199–285. Kluwer, Dordrecht (2002)
Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford (1993)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
Klawonn, F., Kruse, R.: A Łukasiewicz logic based Prolog. Mathware & Soft Computing 1(1), 5–29 (1994)
Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III 23 (1930)
McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16(1), 1–13 (1951)
Metcalfe, G., Olivetti, N., Gabbay, D.: Goal-directed calculi for gödel-dummett logics. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 413–426. Springer, Heidelberg (2003)
Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM TOCL (2004, To appear)
Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)
Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52(1-2), 145–153 (1987)
Mundici, D.: The logic of Ulam’s game with lies. In: Bicchieri, C., Dalla Chiara, M.L. (eds.) Knowledge, belief and strategic interaction, pp. 275–284. Cambridge University Press, Cambridge (1992)
Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theoretical Computer Science 200(1–2), 335–366 (1998)
Olivetti, N.: Tableaux for _Lukasiewicz infinite-valued logic. Studia Logica 73(1), 81–111 (2003)
Pym, D.J., Harland, J.A.: The uniform proof-theoretic foundation of linear logic programming. Journal of Logic and Computation 4(2), 175–206 (1994)
Subrahmanian, V.S.: Intuitive semantics for quantitative rule sets. In: Kowalski, R., Bowen, K. (eds.) Logic Programmin, Proceedings of the Fifth International Conference and Symposium, pp. 1036–1053 (1988)
Vojt´as, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370 (2001)
Wagner, H.: A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz. In: Caferra, R., Salzer, G. (eds.) Int. Workshop on First-Order Theorem Proving, pp. 234–243 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Metcalfe, G., Olivetti, N., Gabbay, D. (2004). Goal-Directed Methods for Łukasiewicz Logic. In: Marcinkowski, J., Tarlecki, A. (eds) Computer Science Logic. CSL 2004. Lecture Notes in Computer Science, vol 3210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30124-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-30124-0_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23024-3
Online ISBN: 978-3-540-30124-0
eBook Packages: Springer Book Archive