Goal-Directed Methods for Łukasiewicz Logic | SpringerLink
Skip to main content

Goal-Directed Methods for Łukasiewicz Logic

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3210))

Included in the following conference series:

Abstract

In this paper we present goal-directed deduction methods for Łukasiewicz infinite-valued logic Ł giving logic programming style algorithms which both have a logical interpretation and provide a suitable basis for implementation. We begin by considering a basic version with connections to calculi for other logics, then make refinements to obtain greater efficiency and termination properties, and to deal with further connectives and truth constants. We finish by considering applications of these algorithms to fuzzy logic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued logic. Journal of Logic, Language and Information 9(1), 5–29 (2000)

    Article  MathSciNet  Google Scholar 

  2. Chang, C.C.: Algebraic analysis of many-valued logics. Transactions of the American Mathematical Society 88, 467–490 (1958)

    Article  MathSciNet  Google Scholar 

  3. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many- Valued Reasoning. In: Trends in Logic, vol. 7, Kluwer, Dordrecht (1999)

    Google Scholar 

  4. Gabbay, D., Olivetti, N.: Goal-directed Proof Theory. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  5. Gabbay, D., Olivetti, N.: Goal oriented deductions. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 9, pp. 199–285. Kluwer, Dordrecht (2002)

    Chapter  Google Scholar 

  6. Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  7. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  8. Klawonn, F., Kruse, R.: A Łukasiewicz logic based Prolog. Mathware & Soft Computing 1(1), 5–29 (1994)

    MathSciNet  Google Scholar 

  9. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III 23 (1930)

    Google Scholar 

  10. McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16(1), 1–13 (1951)

    Article  MathSciNet  Google Scholar 

  11. Metcalfe, G., Olivetti, N., Gabbay, D.: Goal-directed calculi for gödel-dummett logics. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 413–426. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM TOCL (2004, To appear)

    Google Scholar 

  13. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)

    Article  MathSciNet  Google Scholar 

  14. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52(1-2), 145–153 (1987)

    Article  MathSciNet  Google Scholar 

  15. Mundici, D.: The logic of Ulam’s game with lies. In: Bicchieri, C., Dalla Chiara, M.L. (eds.) Knowledge, belief and strategic interaction, pp. 275–284. Cambridge University Press, Cambridge (1992)

    Chapter  Google Scholar 

  16. Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theoretical Computer Science 200(1–2), 335–366 (1998)

    Article  MathSciNet  Google Scholar 

  17. Olivetti, N.: Tableaux for _Lukasiewicz infinite-valued logic. Studia Logica 73(1), 81–111 (2003)

    Article  MathSciNet  Google Scholar 

  18. Pym, D.J., Harland, J.A.: The uniform proof-theoretic foundation of linear logic programming. Journal of Logic and Computation 4(2), 175–206 (1994)

    Article  MathSciNet  Google Scholar 

  19. Subrahmanian, V.S.: Intuitive semantics for quantitative rule sets. In: Kowalski, R., Bowen, K. (eds.) Logic Programmin, Proceedings of the Fifth International Conference and Symposium, pp. 1036–1053 (1988)

    Google Scholar 

  20. Vojt´as, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370 (2001)

    Article  MathSciNet  Google Scholar 

  21. Wagner, H.: A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz. In: Caferra, R., Salzer, G. (eds.) Int. Workshop on First-Order Theorem Proving, pp. 234–243 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Metcalfe, G., Olivetti, N., Gabbay, D. (2004). Goal-Directed Methods for Łukasiewicz Logic. In: Marcinkowski, J., Tarlecki, A. (eds) Computer Science Logic. CSL 2004. Lecture Notes in Computer Science, vol 3210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30124-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30124-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23024-3

  • Online ISBN: 978-3-540-30124-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics