Abstract
Reliable object detection and segmentation is crucial for active safety driver assistance applications. In urban areas where the object density is high, a segmentation based on a spatial criterion often fails due to small object distances. Therefore, optical flow estimates are combined with distance measurements of a Laserscanner in order to separate objects with different motions even if their distance is vanishing. Results are presented on real measurements taken in potentially harmful traffic scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kaempchen, N., Fuerstenberg, K., Skibicki, A., Dietmayer, K.: Sensor fusion for multiple automotive active safety and comfort applications. In: 8th International Forum on Advanced Microsystems for Automotive Applications, Berlin, Germany, March 2004, pp. 137–163 (2004)
Fuerstenberg, K.C., Dietmayer, K.C.J.: Object tracking and classification for multiple active safety and comfort applications using multilayer laserscanners. In: Proceedings of IV 2004, IEEE Intelligent Vehicles Symposium, Parma, Italy (June 2004) (accepted)
Heinrich, S.: Real time fusion of motion and stereo using flow/depth constraint for fast obstacle detection. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 75–82. Springer, Heidelberg (2002) ISBN 3-540-44209-X
Dang, T., Hoffmann, C., Stiller, C.: Fusing optical flow and stereo disparity for object tracking. In: IEEE 5th International Conference on Intelligent Transportation Systems, Singapore, September 2002, pp. 112–117 (2002)
Barron, J.L., Fleet, D.J., Beauchemin, S.S., Burkitt, T.A.: Performance of optical flow techniques. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 236–242 (1992)
Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)
Jähne, B., Haußecker, H., Geißler, P. (eds.): Handbook of Computer Vision and Applications. Academic Press, London (May 1999) ISBN 0123797705
Bouguet, J.-Y.: Pyramidal implementation of the lucas kanade feature tracker. Tech. Rep., Intel Corporation, Microprocessor Research Labs (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaempchen, N., Zocholl, M., Dietmayer, K.C.J. (2004). Spatio–temporal Segmentation Using Laserscanner and Video Sequences. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-28649-3_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22945-2
Online ISBN: 978-3-540-28649-3
eBook Packages: Springer Book Archive