Hybrid Recommender Systems with Case-Based Components | SpringerLink
Skip to main content

Hybrid Recommender Systems with Case-Based Components

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3155))

Included in the following conference series:

  • 1269 Accesses

Abstract

Hybrid recommender systems combine recommendation components of different types to achieve improved performance. Many such hybrids have been built but recent studies show that hybrids using case- based recommendation are rare. This paper shows how a range of different hybrids can be constructed using a case-based recommender as one component, and describes a series of experiments in which 20 different hybrids are built and evaluated. Cascade and feature augmentation hybrids are shown to have the highest accuracy over a range of different profile sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Billsus, D., Pazzani, M.: User Modeling for Adaptive News Access. User-Modeling and User-Adapted Interaction 10(2-3), 147–180 (2000)

    Article  Google Scholar 

  • Burke, R., Hammond, K., Young, B.: The FindMe Approach to Assisted Browsing. IEEE Expert 12(4), 32–40 (1997)

    Article  Google Scholar 

  • Burke, R.: The Wasabi Personal Shopper: A Case-Based Recommender System. In: Proceedings of the 11th National Conference on Innovative Applications of Artificial Intelligence, pp. 844–849 (1999)

    Google Scholar 

  • Burke, R.: A case-based reasoning approach to collaborative filtering. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 370–379. Springer, Heidelberg (2000a)

    Chapter  Google Scholar 

  • Burke, R.: Knowledge-based Recommender Systems. In: Kent, A. (ed.) Encyclopedia of Library and Information Systems, vol. 69(Suppl. 32) (2000b)

    Google Scholar 

  • Burke, R.: Ranking algorithms for costly similarity measures. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 105–117. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  • Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and User Adapted Interaction 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  • Burke, R.: Hybrid Recommender Systems: Comparative Studies (in preparation)

    Google Scholar 

  • Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In: SIGIR 1999 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley, CA (1999)

    Google Scholar 

  • Friedman, N., Gieger, M., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  • Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.T.: An Algorithmic Framework for Performing Collaborative Filtering. In: ACM SIGIR 1999, pp. 230–237 (1999)

    Google Scholar 

  • Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information systems 22(1) (2004)

    Google Scholar 

  • Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating choices in a virtual community of use. In: CHI 1995: Conference Proceedings on Human Factors in Computing Systems, Denver, CO, pp. 194–201 (1995)

    Google Scholar 

  • Mobasher, B., Nakagawa, M.: A Hybrid Web Personalization Model Based on Site Connectivity. In: Proceedings of the WebKDD Workshop at the ACM SIGKKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC (August 2003)

    Google Scholar 

  • Mooney, R.J., Roy, L.: Content-Based Book Recommending Using Learning for Text Categorization. In: SIGIR 1999 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley, CA (1999)

    Google Scholar 

  • Pazzani, M., Billsus, D.: Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning 27, 313–331 (1997)

    Article  Google Scholar 

  • Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of the Conference on Computer Supported Cooperative Work, Chapel Hill, NC, pp. 175–186 (1994)

    Google Scholar 

  • Resnick, P., Varian, H.R.: Recommender Systems. Communications of the ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  • Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System. In: Proceedings of the ACM 1998 Conference on Computer Supported Cooperative Work, Seattle, WA, pp. 345–354 (1998)

    Google Scholar 

  • Schafer, J.B., Konstan, J., Riedl, J.: Recommender Systems in E-Commerce. In: EC 1999: Proceedings of the First ACM Conference on Electronic Commerce, Denver, CO, pp. 158–166 (1999)

    Google Scholar 

  • Schmitt, S., Bergmann, R.: Applying case-based reasoning technology for product selection and customization in electronic commerce environments. In: 12th Bled Electronic Commerce Conference, Bled, Slovenia, June 7-9 (1999)

    Google Scholar 

  • Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word of Mouth”. In: CHI 1995: Conference Proceedings on Human Factors in Computing Systems, Denver, CO, pp. 210–217 (1995)

    Google Scholar 

  • Shimazu, H.: ExpertClerk: Navigating Shoppers’ Buying Process with the Combination of Asking and Proposing. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artification Intelligence, pp. 1443–1448 (2001)

    Google Scholar 

  • Smyth, B., Cotter, P.: A Personalized TV Listings Service for the Digital TV Age. Knowledge-Based Systems 13, 53–59 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burke, R. (2004). Hybrid Recommender Systems with Case-Based Components. In: Funk, P., González Calero, P.A. (eds) Advances in Case-Based Reasoning. ECCBR 2004. Lecture Notes in Computer Science(), vol 3155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28631-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28631-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22882-0

  • Online ISBN: 978-3-540-28631-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics