Incremental Relaxation of Unsuccessful Queries | SpringerLink
Skip to main content

Incremental Relaxation of Unsuccessful Queries

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3155))

Included in the following conference series:

  • 1253 Accesses

Abstract

Increasingly in case-based reasoning (CBR) approaches to product recommendation, some or all of the user’s requirements are treated, at least initially, as constraints that the retrieved cases must satisfy. We present a mixed-initiative approach to recovery from the retrieval failures that occur when there is no case that satisfies all the user’s requirements. The recovery process begins with an explanation of the retrieval failure in which the user’s attention is drawn to combinations of constraints in her query for which there are no matching cases. The user is then guided in the selection of the most useful attribute, and associated constraint, to be eliminated from her query at each stage of an incremental relaxation process. If not prepared to compromise on the attribute suggested for elimination at any stage, the user can select another attribute to be eliminated. On successful completion of the recovery process, the retrieved cases involve only compromises that the user has chosen, in principle, to accept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bridge, D.: Towards Conversational Recommender Systems: a Dialogue Grammar Approach. In: Aha, D.W. (ed.) Proceedings of the EWCBR-02 Workshop on Mixed- Initiative Case-Based Reasoning, pp. 9–22 (2002)

    Google Scholar 

  2. Thompson, C.A., Göker, M.H., Langley, P.: A Personalized System for Conversational Recommendations. Journal of Artificial Intelligence Research 21, 393–428 (2004)

    Google Scholar 

  3. Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: A Case-Based Travel Advisory System. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 613–627. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Wilke, W., Lenz, M., Wess, S.: Intelligent Sales Support with CBR. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.) Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400, pp. 91–113. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. McSherry, D.: Explanation of Retrieval Mismatches in Recommender System Dialogues. In: Aha, D.W. (ed.) Proceedings of the ICCBR 2003 Workshop on Mixed-Initiative Case-Based Reasoning, pp. 191–199 (2003)

    Google Scholar 

  6. Aha, D.W., Breslow, L.A., Muńoz-Avila, H.: Conversational Case-Based Reasoning. Applied Intelligence 14, 9–32 (2001)

    Article  MATH  Google Scholar 

  7. Corella, F., Kaplan, S.J., Wiederhold, G., Yesil, L.: Cooperative Responses to Boolean Queries. In: Proceedings of the First International Conference on Data Engineering, pp. 77–85 (1984)

    Google Scholar 

  8. Godfrey, P.: Minimisation in Cooperative Response to Failing Database Queries. International Journal of Cooperative Information Systems 6, 95–149 (1997)

    Article  Google Scholar 

  9. Janas, J.M.: How to Not Say Nil - Improving Answers to Failing Queries in Data Base Systems. In: Proceedings of the Sixth International Joint Conference on Artificial Intelligence, pp. 429–434 (1979)

    Google Scholar 

  10. Janas, J.M.: On the Feasibility of Informative Responses. In: Gallaire, H., Minker, J., Nicolas, J.-M. (eds.) Advances in Database Theory, vol. 1, pp. 397–414. Plenum Press, New York (1981)

    Google Scholar 

  11. Kaplan, S.J.: Cooperative Responses from a Portable Natural Language Query System. Artificial Intelligence 19, 165–187 (1982)

    Article  Google Scholar 

  12. Smyth, B., McClave, P.: Similarity vs. Diversity. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. McSherry, D.: Similarity and Compromise. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 291–305. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. McSherry, D.: Coverage-Optimized Retrieval. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 1349–1350 (2003)

    Google Scholar 

  15. McSherry, D.: Balancing User Satisfaction and Cognitive Load in Coverage-Optimised Retrieval. In: Coenen, F., Preece, A., Macintosh, A. (eds.) Research and Development in Intelligent Systems XX, pp. 381–394. Springer, London (2003)

    Google Scholar 

  16. Bridge, D., Ferguson, A.: An Expressive Query Language for Product Recommender Systems. Artificial Intelligence Review 18, 269–307 (2002)

    Article  Google Scholar 

  17. Burke, R.: Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial Intelligence Review 18, 245–267 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McSherry, D. (2004). Incremental Relaxation of Unsuccessful Queries. In: Funk, P., González Calero, P.A. (eds) Advances in Case-Based Reasoning. ECCBR 2004. Lecture Notes in Computer Science(), vol 3155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28631-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28631-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22882-0

  • Online ISBN: 978-3-540-28631-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics