k-Center Problems with Minimum Coverage | SpringerLink
Skip to main content

k-Center Problems with Minimum Coverage

  • Conference paper
Computing and Combinatorics (COCOON 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3106))

Included in the following conference series:

  • 618 Accesses

Abstract

The k-center problem is a well-known facility location problem and can be described as follows: Given a complete undirected graph G=(V,E), a metric d:V×V→ℝ +  and a positive integer k, we seek a subset UV of at most k centers which minimizes the maximum distances from points in V to U. Formally, the objective function is given by:

$$ \textstyle\min_{U\subseteq V,|U|\leq k}\max_{v\in V}\min_{r\in U}d(v,r).$$

As a typical example, we may want to set up k service centers (e.g., police stations, fire stations, hospitals, polling centers) and minimize the maximum distances between each client and these centers. The problem is known to be \(\mathcal{NP}\)-hard [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. Journal of Algorithms 15(3), 385–415 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  3. Hochbaum, D., Shmoys, D.B.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10, 180–184 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hochbaum, D., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. Journal of the ACM 33, 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  5. Hsu, W., Nemhauser, G.: Easy and hard bottleneck location problems. Discrete Applied Mathematics 1, 209–216 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant k-center problems. Theoretical Computer Science 242(1-2), 237–245 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM Journal on Discrete Mathematics 13(3), 403–418 (2000)

    Article  MathSciNet  Google Scholar 

  8. Krumke, S.O.: On a generalization of the p-center problem. Information Processing Letters 56(2), 67–71 (1995)

    Article  MathSciNet  Google Scholar 

  9. Plesnik, J.: A heuristic for the p-center problem in graphs. Discrete Applied Mathematics 17, 263–268 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Xu, Z., Lim, A., Rodrigues, B., Wang, F.: Coverage commitment k-center problems (long version) (September 2003), http://www.comp.nus.edu.sg/~judge/doc.html (unpublished)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lim, A., Rodrigues, B., Wang, F., Xu, Z. (2004). k-Center Problems with Minimum Coverage. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27798-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22856-1

  • Online ISBN: 978-3-540-27798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics