Minsquare Factors and Maxfix Covers of Graphs | SpringerLink
Skip to main content

Minsquare Factors and Maxfix Covers of Graphs

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3064))

Abstract

We provide a polynomial algorithm that determines for any given undirected graph, positive integer k and various objective functions on the edges or on the degree sequences, as input, k edges that minimize the given objective function. The tractable objective functions include linear, sum of squares, etc. The source of our motivation and at the same time our main application is a subset of k vertices in a line graph, that cover as many edges as possible (maxfix cover). Besides the general algorithm and connections to other problems, the extension of the usual improving paths for graph factors could be interesting in itself: the objects that take the role of the improving walks for b-matchings or other general factorization problems turn out to be edge-disjoint unions of pairs of alternating walks. The algorithm we suggest also works if for any subset of vertices upper, lower bound constraints or parity constraints are given. In particular maximum (or minimum) weight b-matchings of given size can be determined in polynomial time, combinatorially, in more than one way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apollonio, N., Caccetta, L., Simeone, B.: Cardinality Constrained Path Covering Problems in Trees, Tech.Rep. n. 18, Department of Statistics, Probability, and Applied Statistics, University of Rome “La Sapienza” (2002)

    Google Scholar 

  2. Apollonio, N., Caccetta, L., Simeone, B.: Cardinality Constrained Path Covering Problems in Grid Graphs. Networks (to appear)

    Google Scholar 

  3. Bouchet, A., Cunningham, W.: Delta-matroids, Jump-systems and Bisubmodular polyhedra. SIAM J. DIscrete Mathematics (February 1995)

    Google Scholar 

  4. Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial Optimization. John Wiley & Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  5. Cunningham, W.H., Green-Krótki, J.: b-matching degree-sequence polyhedra. Combinatorica 11, 219–230 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edmonds, J.R.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. Standards Sect. B, 125–130 (1968)

    Google Scholar 

  7. Edmonds, J.R., Johnson, E.L.: Matching: a well-solved class of integer linear programs. In: Guy, Hanani, Sauer, Schönheim (eds.) Combinatorial Structures and Their Applications, Calgary, Alberta (1969)

    Google Scholar 

  8. Gerards, M.H.: ‘Matching’. In: The Handbook of Operations Research and Management Science. ‘Network Models’, vol. 7, pp. 135–224 (1995)

    Google Scholar 

  9. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  10. Lovász, L.: On the structure of factorizable graphs. Acta Math. Acad. Sci. Hungar. 23, 179–195 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lovász, L.: The factorization of graphs II. Acta Math. Acad. Sci. Hungar. 23, 223–246 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lovász, L., Plummer, M.D.: Matching Theory. Akadémiai Kiadó, Budapest (1986)

    MATH  Google Scholar 

  13. Murota, K.: Discrete convex analysis. Mathematical Programming 83, 313–371 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Petrank, E.: The Hardness of Approximation: Gap Location. Computational Complexity 4, 133–157 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pulleyblank, W.R.: Matchings and stable sets. In: Graham, Grötschel, Lovász (eds.) Handbook of Combinatorics, Elsevier Science, Amsterdam (1995)

    Google Scholar 

  16. Schrijver, A.: A Course in Combinatorial Optimization (lecture notes) (October 2000), http://homepages.cwi.nl/lex/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Apollonio, N., Sebő, A. (2004). Minsquare Factors and Maxfix Covers of Graphs. In: Bienstock, D., Nemhauser, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2004. Lecture Notes in Computer Science, vol 3064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25960-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25960-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22113-5

  • Online ISBN: 978-3-540-25960-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics