Abstract
We describe models and efficient algorithms for detecting groups (communities) functioning in communication networks which attempt to hide their functionality – hidden groups. Our results reveal the properties of the background network activity that make detection of the hidden group easy, as well as those that make it difficult.
This research was partially supported by NSF grants 0324947 and 0346341
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Magdon-Ismail, M., Goldberg, M., Wallace, W., Siebecker, D.: Locating hidden groups in communication networks using Hidden Markov Models. In: Chen, H., Miranda, R., Zeng, D.D., Demchak, C.C., Schroeder, J., Madhusudan, T. (eds.) ISI 2003. LNCS, vol. 2665, pp. 126–137. Springer, Heidelberg (2003)
Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, New york (2001)
Janson, S., Luczak, T., Rucinski, A.: Random Graphs. Series in Discrete Mathematics and Optimization. Wiley, New york (2000)
Monge, P., Contractor, N.: Theories of Communication Networks. Oxford University Press, Oxford (2002)
Goldberg, M., Horn, P., Magdon-Ismail, M., Riposo, J., Siebecker, D., Wallace, W., Yener, B.: Statistical modeling of social groups on communication networks. In: Inaugural conference of the North American Association for Computational Social and Organizational Science (NAACSOS 2003), Pittsburgh, PA (2003)
Siebecker, D.: A Hidden Markov Model for describing the statistical evolution of social groups over communication networks. Master’s thesis, Rensselaer Polytechnic Institute, Troy, NY 12180, Advisor: Malik Magdon-Ismail (2003)
Carley, K., Prietula, M. (eds.): Computational Organization Theory. Lawrence Erlbaum associates, Hillsdale (2001)
Carley, K., Wallace, A.: Computational organization theory: A new perspective. In: Gass, S., Harris, C. (eds.) Encyclopedia of Operations Research and Management Science, Kluwer Academic Publishers, Norwell (2001)
Sanil, A., Banks, D., Carley, K.: Models for evolving fixed node networks: Model fitting and model testing. Journal oF Mathematical Sociology 21, 173–196 (1996)
Newman, M.E.J.: The structure and function of complex networks. SIAM Reviews 45, 167–256 (2003)
West, D.B.: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River (2001)
Berge, C.: Hypergraphs. North-Holland, New York (1978)
Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)
Erdős, P., Rényi, A.: On the evolution of random graphs. Maguar Tud. Acad. Mat. Kutató Int. Kozël 5, 17–61 (1960)
Erdős, P., Rényi, A.: On the strength of connectedness of a random graph. Acta Math. Acad. Sci. Hungar. 12, 261–267 (1961)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baumes, J., Goldberg, M., Magdon-Ismail, M., Wallace, W.A. (2004). Discovering Hidden Groups in Communication Networks. In: Chen, H., Moore, R., Zeng, D.D., Leavitt, J. (eds) Intelligence and Security Informatics. ISI 2004. Lecture Notes in Computer Science, vol 3073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25952-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-540-25952-7_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22125-8
Online ISBN: 978-3-540-25952-7
eBook Packages: Springer Book Archive