Adaptive Linear Market Value Functions for Targeted Marketing | SpringerLink
Skip to main content

Adaptive Linear Market Value Functions for Targeted Marketing

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3066))

Included in the following conference series:

Abstract

This paper presents adaptive linear market value functions to solve the problem of identification of customers having potential market value in targeted marketing. The performance of these methods is compared with some standard data mining methods such as simple Naive Bayes. Experiments on real world data show that the proposed methods are efficient and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alsaffar, A., Deogun, J., Sever, H.: Optimal Queries in Information Filtering. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 435–443. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Huang, J., Liu, C., Ou, C., Yao, Y.Y., Zhong, N.: Attribute Reduction of Rough Sets in Mining Market Value Funtions. In: Proc. 2003 IEEE/WIC International Conference on Web Intelligence (WI 2003), pp. 470–473. IEEE-CS Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  3. Kim, Y.S., Street, W.N.: Coil challenge 2000: Choosing and Explaining Likely Caravan Insurance Customers. Technical Report 2000-09. Sentient Machine Research and Leiden Institute of Advanced Computer Science (June 2000), http://www.wi.leidenuniv.nl/putten/library/cc20000/

  4. Ling, C.X., Li, C.: Data Mining for Direct Marketing: Problems and Solution. In: Proc of KDD 1998, pp. 73–79 (1998)

    Google Scholar 

  5. Poel, D., Piasta, Z.: Purchase Prediction in Database Marketing with the ProbRough System. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 593–600. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Mitchell, T.M.: Machine Learning. China Machine Press, Beijing (2003)

    Google Scholar 

  7. Wong, S.K.M., Yao, Y.Y.: Query Formulation in Linear Retrieval Models. Journal of the American Society for Information Science 41(5), 334–341 (1990)

    Article  Google Scholar 

  8. Wong, S.K.M., Yao, Y.Y.: Evaluation of an Adaptive Linear Model. Jounral of the American Society for Information Science 42(10), 723–730 (1991)

    Article  Google Scholar 

  9. Witten, I., Frank, E.: Data Mining Practical Machine Learning Tools and Techniques with Java Implementations. China Machine Press, Beijing (2003)

    Google Scholar 

  10. Yao, Y.Y., Zhong, N., Huang, J., Ou, C., Liu, C.: Using Market Value Functions for Targeted Marketing Data Mining. International Journal of Pattern Recognition and Artigicial Intelligence 16(8), 1117–1131 (2002)

    Article  Google Scholar 

  11. Zhong, N., Liu, J., Yao, Y.Y.: Web Intelligence (WI): A New Paradigm for Developing the Wisdom Web and Social Network Intelligence. In: Zhong, N., Liu, J., Yao, Y.Y. (eds.) Web Intelligence, pp. 1–16. Springer Monograph, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Zhong, N., Liu, J., Yao, Y.Y. (eds.): Web Intelligence. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  13. Zhong, N.: Towards Web Intelligence. In: Menasalvas, E., Segovia, J., Szczepaniak, P.S. (eds.) AWIC 2003. LNCS (LNAI), vol. 2663, pp. 1–14. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Zhong, N., Yao, Y.Y., Liu, C., Huang, J., Ou, C.: Data Mining for Targeted Marketing. In: Intelligent Technologies for Information Analysis, Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, J., Zhong, N., Liu, C., Yao, Y. (2004). Adaptive Linear Market Value Functions for Targeted Marketing. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25929-9_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22117-3

  • Online ISBN: 978-3-540-25929-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics