The Edge-Set Encoding Revisited: On the Bias of a Direct Representation for Trees | SpringerLink
Skip to main content

The Edge-Set Encoding Revisited: On the Bias of a Direct Representation for Trees

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3103))

Included in the following conference series:

  • 1194 Accesses

Abstract

The edge-set encoding is a direct tree representation which directly represents trees as sets of edges. There are two variants of the edge-set encoding: the edge-set encoding without heuristics, and the edge-set encoding with heuristics. An investigation into the bias of the edge-set encoding shows that the crossover operator of the edge-set encoding without heuristics is unbiased, that means it does not favor particular types of trees. In contrast, the crossover operator with heuristics is biased towards the simple minimum spanning tree (MST) and generates more likely trees that are MST-like. As a result, the performance of the edge-set encoding without heuristics does not depend on the structure of the optimal solution. Using the heuristic crossover operator results only in high genetic algorithm (GA) performance if the optimal solution of the problem is slightly different from the simple MST. However, if the optimal solution is not very similar to the simple MST a GA using the heuristic crossover operator fails and is not able to find the optimal solution. Therefore, it is recommended that the edge-set encoding with heuristics should only be used if it is known a priori that the optimal solution is very similar to the simple MST. If this is not known a priori, other unbiased search operators and representations should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Narula, S.C., Ho, C.A.: Degree-constrained minimum spanning trees. Computers and Operations Research 7, 239–249 (1980)

    Article  Google Scholar 

  2. Fekete, S., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.: A networkflow technique for finding low-weight bounded-degree spanning trees. Journal of Algorithms 24, 310–324 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Raidl, G.R., Julstrom, B.A.: Edge-sets: An effective evolutionary coding of spanning trees. IEEE Transactions on Evolutionary Computation 7, 225–239 (2003)

    Article  Google Scholar 

  4. Hu, T.C.: Optimum communication spanning trees. SIAM Journal on Computing 3, 188–195 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 1st edn. Studies on Fuzziness and Soft Computing, vol. 104. Springer, Berlin (2002) 2nd printing 2003

    Google Scholar 

  6. Rothlauf, F., Goldberg, D.E., Heinzl, A.: Network random keys – A tree network representation scheme for genetic and evolutionary algorithms. Evolutionary Computation 10, 75–97 (2002)

    Article  Google Scholar 

  7. Palmer, C.C., Kershenbaum, A.: Representing trees in genetic algorithms. In: Proceedings of the First IEEE Conference on Evolutionary Computation, Piscataway, NJ, IEEE Service Center, vol. 1, pp. 379–384 (1994)

    Google Scholar 

  8. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für Mathematik und Physik 27, 742–744 (1918)

    Google Scholar 

  9. Gottlieb, J., Julstrom, B.A., Raidl, G.R., Rothlauf, F.: Prüfer numbers: A poor representation of spanning trees for evolutionary search. In: Spector, L., Goodman, E., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference 2001, San Francisco, CA, pp. 343–350. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System Sci. 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a finite metric by a small number of tree metrics. In: Proc. 39th IEEE Symp. on Foundations of Computer Science, pp. 111–125 (1998)

    Google Scholar 

  13. Palmer, C.C.: An approach to a problem in network design using genetic algorithms. unpublished PhD thesis, Polytechnic University, Troy, NY (1994)

    Google Scholar 

  14. Berry, L.T.M., Murtagh, B.A., McMahon, G.: Applications of a genetic-based algorithm for optimal design of tree-structured communication networks. In: Proceedings of the Regional Teletraffic Engineering Conference of the International Teletraffic Congress, Pretoria, South Africa, pp. 361–370 (1995)

    Google Scholar 

  15. Li, Y., Bouchebaba, Y.: A new genetic algorithm for the optimal communication spanning tree problem. In: Fonlupt, C., Hao, J.K., Lutton, E., Ronald, E., Schoenauer, M. (eds.) Proceedings of Artificial Evolution: Fifth European Conference, pp. 162–173. Springer, Berlin (1999)

    Google Scholar 

  16. Kim, J.R., Gen, M.: Genetic algorithm for solving bicriteria network topology design problem. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A., Porto, W. (eds.) Proceedings of the 1999 IEEE Congress on Evolutionary Computation, pp. 2272–2279. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  17. Chou, H., Premkumar, G., Chu, C.H.: Genetic algorithms for communications network design - an empirical study of the factors that influence performance. IEEE Transactions on Evolutionary Computation 5, 236–249 (2001)

    Article  Google Scholar 

  18. Rothlauf, F., Gerstacker, J., Heinzl, A.: On the optimal communication spanning tree problem. Technical Report 15/2003, University of Mannheim (2003)

    Google Scholar 

  19. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evolutionary Computation 11, 381–415 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tzschoppe, C., Rothlauf, F., Pesch, HJ. (2004). The Edge-Set Encoding Revisited: On the Bias of a Direct Representation for Trees. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics