Comparing Genetic Programming and Evolution Strategies on Inferring Gene Regulatory Networks | SpringerLink
Skip to main content

Comparing Genetic Programming and Evolution Strategies on Inferring Gene Regulatory Networks

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

  • 1811 Accesses

Abstract

In recent years several strategies for inferring gene regulatory networks from observed time series data of gene expression have been suggested based on Evolutionary Algorithms. But often only few problem instances are investigated and the proposed strategies are rarely compared to alternative strategies. In this paper we compare Evolution Strategies and Genetic Programming with respect to their performance on multiple problem instances with varying parameters. We show that single problem instances are not sufficient to prove the effectiveness of a given strategy and that the Genetic Programming approach is less prone to varying instances than the Evolution Strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the boolean network model. Pacific Symposium on Biocomputing 4, 17–28 (1999)

    Google Scholar 

  2. Akutsu, T., Miyano, S., Kuhara, S.: Algorithms for identifying boolean networks and related biological networks based on matrix multiplication and fingerprint function. Journal of Computational Biology 7(3), 331–343 (2000)

    Article  Google Scholar 

  3. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. Pacific Symposium on Biocomputing 4, 29–40 (1999)

    Google Scholar 

  4. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaption. In: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, pp. 312– 317 (1996)

    Google Scholar 

  5. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman, San Francisco ( April 1999)

    Google Scholar 

  6. Mendes, P., Sha, W., Ye, K.: Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics 19(2), 122–129 (2003)

    Article  Google Scholar 

  7. Morishita, R., Imade, H., Ono, I., Ono, N., Okamoto, M.: Finding multiple solutions based on an evolutionary algorithm for inference of genetic networks by s-system. In: Congress on Evolutionary Computation, pp. 615–622 (2003)

    Google Scholar 

  8. Sakamoto, E., Iba, H.: Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of Congress on Evolutionary Computation, pp. 720–726. IEEE Press, Los Alamitos (27-30, 2001)

    Google Scholar 

  9. Savageau, M.: 20 years of S-systems. In: Voit, E. (ed.) Canonical Nonlinear Modeling. S-systems Approach to Understand Complexity, New York, pp. 1–44. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  10. Schwefel, H.-P.: Evolution and Optimum Seeking. John Wiley & Sons, New York (1995)

    Google Scholar 

  11. Spieth, C., Streichert, F., Speer, N., Zell, A.: Iteratively inferring gene regulatory networks with virtual knockout experiments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 102–111. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Thieffry, D., Thomas, R.: Qualitative analysis of gene networks. Pacific Symposium on Biocomputing 3, 77–88 (1998)

    Google Scholar 

  13. Tominaga, D., Kog, N., Okamoto, M.: Efficient numerical optimization technique based on genetic algorithm for inverse problem. In: Proceedings of German Conference on Bioinformatics, pp. 127–140 (1999)

    Google Scholar 

  14. Tominaga, D., Okamoto, M., Maki, Y., Watanabe, S., Eguchi, Y.: Nonlinear numerical optimzation technique based on genetic algorithm for inverse problem: Towards the inference of genetic networks. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 251–258. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  15. Wahde, M., Hertz, J.: Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 55, 129–136 (2000)

    Article  Google Scholar 

  16. Weaver, D.C., Workman, C.T., Stormo, G.D.: Modeling regulatory networks with weight matrices. In: Pacific Symposium on Biocomputing, Singapore, vol. 4, pp. 112–123. World Scientific Press, Singapore (1999)

    Google Scholar 

  17. Wuensche, A.: Genomic regulation modeled as a network with basins of attraction. In: Altman, R., Dunker, A., Hunter, L., Klein, T. (eds.) Pacific Symposium on Biocomputing, Singapore, vol. 3, pp. 89–102. World Scientific Press, Singapore (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Streichert, F., Planatscher, H., Spieth, C., Ulmer, H., Zell, A. (2004). Comparing Genetic Programming and Evolution Strategies on Inferring Gene Regulatory Networks. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics