Model Improvement by the Statistical Decomposition | SpringerLink
Skip to main content

Model Improvement by the Statistical Decomposition

  • Conference paper
Artificial Intelligence and Soft Computing - ICAISC 2004 (ICAISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3070))

Included in the following conference series:

Abstract

In this paper we propose applying multidimensional decompositions for modeling improvement. Results generated by different models usually include both wanted and destructive components. Many of the components are common to all the models. Our aim is to find the basis variables with the positive and the negative influence on the modeling task. It will be perofrmed with multidimensional transforamtions such as ICA and PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Armstrong, J.S., Collopy, F.: Error Measures For Generalizing About Forecasting Methods: Empirical Comparisons. International Journal of Forecasting 8 (1992)

    Google Scholar 

  3. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural Computation 11(1), 157–192 (1999)

    Article  MathSciNet  Google Scholar 

  5. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Book  Google Scholar 

  6. Cichocki, A., Sabala, I., Choi, S., Orsier, B., Szupiluk, R.: Self adaptive independent component analysis for sub-Gaussian and super-Gaussian mixtures with unknown number of sources and additive noise (NOLTA 1997), vol. 2, Hawaii, USA, pp. 731–734 (1997)

    Google Scholar 

  7. Comon, P.: Independent component analysis, a new concept? Signal Processing, Elsevier 36(3), 287–314 (1994)

    MATH  Google Scholar 

  8. Greene, W.H.: Econometric analysis. Prentice Hall, NJ (2000)

    Google Scholar 

  9. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, Chichester (2001)

    Book  Google Scholar 

  11. Kennedy, R.L., Lee, Y., Van Roy, B., Reed, C., Lippman, R.P. (eds.): Solving Data Mining Problems with Pattern Recognition. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

  12. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)

    MATH  Google Scholar 

  13. Mitra, S., Pal, S.K., Mitra, P.: Data Mining in Soft Computing Framework: A Survey. IEEE Transactions on Neural Networks 13(1) (2002)

    Google Scholar 

  14. Schwarz, G.: Estimating the dimension of a model. Ann. Statistics 6, 461–464 (1978)

    Article  MATH  Google Scholar 

  15. Yang, Y.: Adaptive regression by mixing. Journal of American Statistical Association 96, 574–588 (2001)

    Article  MATH  Google Scholar 

  16. Chen, S., Donoho, D., Saunders, M.A.: Atomic Decomposition by Basis Pursuit. SIAM Journal on Scientific Computing (1996)

    Google Scholar 

  17. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Google Scholar 

  18. Kendall, M.: Multivariate Analysis, Charles Griffin&Co. (1975)

    Google Scholar 

  19. Cruces, S., Castedo, L., Cichocki, A.: Robust blind Source Separation Algorithms using Cumulants. Neurocomputing 49 (2002)

    Google Scholar 

  20. Choi, S., Cichocki, A.: A Robust Whitening Procedure In Blind Separation Context. Electronics Letters 36 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Wojewnik, P., Zabkowski, T. (2004). Model Improvement by the Statistical Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_188

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24844-6_188

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22123-4

  • Online ISBN: 978-3-540-24844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics