Abstract
In this paper we propose applying multidimensional decompositions for modeling improvement. Results generated by different models usually include both wanted and destructive components. Many of the components are common to all the models. Our aim is to find the basis variables with the positive and the negative influence on the modeling task. It will be perofrmed with multidimensional transforamtions such as ICA and PCA.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)
Armstrong, J.S., Collopy, F.: Error Measures For Generalizing About Forecasting Methods: Empirical Comparisons. International Journal of Forecasting 8 (1992)
Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
Cardoso, J.F.: High-order contrasts for independent component analysis. Neural Computation 11(1), 157–192 (1999)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)
Cichocki, A., Sabala, I., Choi, S., Orsier, B., Szupiluk, R.: Self adaptive independent component analysis for sub-Gaussian and super-Gaussian mixtures with unknown number of sources and additive noise (NOLTA 1997), vol. 2, Hawaii, USA, pp. 731–734 (1997)
Comon, P.: Independent component analysis, a new concept? Signal Processing, Elsevier 36(3), 287–314 (1994)
Greene, W.H.: Econometric analysis. Prentice Hall, NJ (2000)
Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, Chichester (2001)
Kennedy, R.L., Lee, Y., Van Roy, B., Reed, C., Lippman, R.P. (eds.): Solving Data Mining Problems with Pattern Recognition. Prentice Hall, Englewood Cliffs (1997)
Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)
Mitra, S., Pal, S.K., Mitra, P.: Data Mining in Soft Computing Framework: A Survey. IEEE Transactions on Neural Networks 13(1) (2002)
Schwarz, G.: Estimating the dimension of a model. Ann. Statistics 6, 461–464 (1978)
Yang, Y.: Adaptive regression by mixing. Journal of American Statistical Association 96, 574–588 (2001)
Chen, S., Donoho, D., Saunders, M.A.: Atomic Decomposition by Basis Pursuit. SIAM Journal on Scientific Computing (1996)
Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)
Kendall, M.: Multivariate Analysis, Charles Griffin&Co. (1975)
Cruces, S., Castedo, L., Cichocki, A.: Robust blind Source Separation Algorithms using Cumulants. Neurocomputing 49 (2002)
Choi, S., Cichocki, A.: A Robust Whitening Procedure In Blind Separation Context. Electronics Letters 36 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szupiluk, R., Wojewnik, P., Zabkowski, T. (2004). Model Improvement by the Statistical Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_188
Download citation
DOI: https://doi.org/10.1007/978-3-540-24844-6_188
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22123-4
Online ISBN: 978-3-540-24844-6
eBook Packages: Springer Book Archive