Towards Real Life Applications in Emotion Recognition | SpringerLink
Skip to main content

Towards Real Life Applications in Emotion Recognition

Comparing Different Databases, Feature Sets, and Reinforcement Methods for Recognizing Emotions from Speech

  • Conference paper
Affective Dialogue Systems (ADS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3068))

Included in the following conference series:

  • 1781 Accesses

Abstract

In this paper different kinds of emotional speech corpora are compared in terms of speech acquisition (acted speech vs. elicited speech), utterance length and similarity to spontaneous speech. Feature selection is applied to find an optimal feature set and to examine the correlation of different kinds of features to dimensions in the emotional space. The influence of different feature sets is evaluated. To cope with environmental conditions and to get a robust application, effects related to energy and additive noise are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Douglas-Cowie, E., Cowie, R., Schröder, M.: A new emotion database: Considerations, sources and scope. In: Proc. ISCA Workshop on Speech and Emotion (2000)

    Google Scholar 

  2. Devillers, L., Vasilescu, I.: Prosodic cues for emotion characterization in real-life spoken dialogs. In: Proc. Eurospeech, Geneva (2003)

    Google Scholar 

  3. Lee, C.M., Narayanan, S.: Emotion recognition using a data-driven fuzzy interference system. In: Proc. Eurospeech, Geneva (2003)

    Google Scholar 

  4. Gustafson-Capková, S.: Emotions in speech: Tagset and acoustic correlates (2001)

    Google Scholar 

  5. Oudeyer, P.Y.: Novel useful features and algorithms for the recognition of emotions in human speech. In: Proc. 1st International Conference on Prosody (2002)

    Google Scholar 

  6. Seppänen, T., Väyrynen, E., Toivanen, J.: Prosody-based classification of emotions in spoken finnish. In: Proc. Eurospeech, Geneva (2003)

    Google Scholar 

  7. Hozjan, V., Kačič, Z.: Improved emotion recognition with large set of statistical features. In: Proc. Eurospeech, Geneva (2003)

    Google Scholar 

  8. Mozziconacci, S.J.L., Hermes, D.J.: Role of intonation patterns in conveying emotions in speech. In: Proc. ICPhS, San Francisco (1999)

    Google Scholar 

  9. McGilloway, S., Cowie, R., Douglas-Cowie, E., Gielen, S., Westerdijk, M., Stroeve, S.: Approaching automatic recognition of emotion from voice: a rough benchmark. In: Proc. of the ISCA workshop on Speech and emotion, Newcastle (2000)

    Google Scholar 

  10. Rahurka, M.A., Hansen, J.H.L.: Frequency distribution based weighted sub-band approach for classification of emotional/stressful content in speech. In: Proc. Eurospeech, Geneva (2003)

    Google Scholar 

  11. Batliner, A., Fischer, K., Huber, R., Spilker, J., Nöth, E.: Desperately seeking emotions or: Actors, wizards, and human beings. In: Proc. ISCA Workshop on Speech and Emotion, Belfast (2000)

    Google Scholar 

  12. Osgood, C.E., Suci, G.J., Tannenbaum, P.H.: The Measurement of Meaning. University of Illinois Press, Urbana (1967)

    Google Scholar 

  13. Tato, R., Santos, R., Kompe, R., Pardo, J.: Emotional space improves emotion recognition. In: Proc. ICSLP (2000)

    Google Scholar 

  14. Santos, R.: Emotion recognition in speech signal. Master’s thesis, Technical University of Madrid (2002), http://www-gth.die.upm.es/partners/sony/main.html

  15. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  16. Meyer, Schützwohl, Reisenzein: Einführung in die Emotionspsychologie. Huber, Göttingen (1999–2003)

    Google Scholar 

  17. Amir, N.: Classifying emotions in speech: A comparison of methods. In: Proc. of Eurospeech (2001)

    Google Scholar 

  18. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  19. Lawrence, C., Rahim, M.: Integrated bias removal techniques for robust speech recognition. Computer Speech and Language 13, 283–298 (1999)

    Article  Google Scholar 

  20. Matassoni, M., Omologo, M., Svaizer, P.: Use of real and contaminated speech for training of a hands-free in-car speech recognizer. In: Proc. Eurospeech, Aalborg, Denmark (2001)

    Google Scholar 

  21. Giuliani, D., Matassoni, M., Omologo, M., Svaizer, P.: Training of HMM with filtered speech material for hands-free recognition. In: Proc. ICASSP, Phoenix, USA (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Küstner, D., Tato, R., Kemp, T., Meffert, B. (2004). Towards Real Life Applications in Emotion Recognition. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds) Affective Dialogue Systems. ADS 2004. Lecture Notes in Computer Science(), vol 3068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24842-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24842-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22143-2

  • Online ISBN: 978-3-540-24842-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics