Abstract
This paper presents the application of Intrinsic Evolvable Hardware to real-world combinational circuit synthesis, as an alternative to conventional approaches. The evolutionary technique employs Cartesian Genetic Programming at a functional level by devising compact evolutionary processing elements and an external genetic reconfiguration unit. The experimental results conclude that in terms of computational effort, filtered image signal and implementation cost, the evolution outperforms convention approaches in most cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Poli, R.: Genetic Programming for Image Analysis. In: Genetic Programming: Proceedings of the First Annual Conference, pp. 363–368 (1996)
Harris, C., Buxton, B.: Evolving Edge Detectors. Research Note RN/96/3. University College London, Department of Computer Science (1996)
Ross, B., Feuten, F., Yashkir, D.: Edge Detection of Petrographic Images Using Genetic Programming. Brock Computer Science Technical Reports, Brock University, Ontario, Canada CS-00-01 (2000)
Smith, S., Crouch, D., Tyrrell, A.: Evolving Image Processing Operations for an Evolvable Hardware Environment. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 332–343. Springer, Heidelberg (2003)
Sekanina, L.: Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 186–198. Springer, Heidelberg (2003)
Sekanina, L., Drabek, V.: Automatic Design of Image Operators Using Evolvable Hardware. In: Fifth IEEE Design and Diagnostic of Electronic Circuits and Systems DDECS, pp. 132–139 (2002)
Sekanina, L.: Image Filter Design with Evolvable Hardware. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 255–266. Springer, Heidelberg (2002)
Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Digital Circuits – Part I. Journal of Genetic Programming and Evolvable Machines 1(1), 8–35 (2000)
Back, T., Hoffimeister, F., Schwefel, H.P.: A Survey of Evolutionary Strategies. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann, San Fransisco (1991)
Krohling, R., Zhou, Y., Tyrrell, A.: Evolving FPGA-based robot controller using an evolutionary algorithm. In: 1st International Conference on Artificial Immune Systems, Canterbury (September 2003)
Scott, S.D., Seth, S., Samal, A.: A Synthesis VHDL Coding of a Genetic Algorithm. Technical Report UNL-CSE-97-009 (1997)
Wolfram, S.: University and Complexity in Cellular Automata, vol. 10, pp. 1–35. Physica, Heidelberg
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Smith, S.L., Tyrrell, A.M. (2004). Intrinsic Evolvable Hardware in Digital Filter Design. In: Raidl, G.R., et al. Applications of Evolutionary Computing. EvoWorkshops 2004. Lecture Notes in Computer Science, vol 3005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24653-4_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-24653-4_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21378-9
Online ISBN: 978-3-540-24653-4
eBook Packages: Springer Book Archive