Writing Information into DNA | SpringerLink
Skip to main content

Writing Information into DNA

  • Chapter
Aspects of Molecular Computing

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2950))

Abstract

The time is approaching when information can be written into DNA. This tutorial work surveys the methods for designing code words using DNA, and proposes a simple code that avoids unwanted hybridization in the presence of shift and concatenation of DNA words and their complements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Brenner, S., Lerner, R.A.: Encoded Combinatorial Chemistry. Proc. Nation. Acad. Sci. USA 89(12), 5381–5383 (1992)

    Article  Google Scholar 

  3. Brenner, S., Williams, S.R., Vermaas, E.H., Storck, T., Moon, K., McCollum, C., Mao, J.I., Luo, S., Kirchner, J.J., Eletr, S., DuBridge, R.B., Burcham, T., Albrecht, G.: In Vitro Cloning of Complex Mixtures of DNA on Microbeads: physical separation of differentially expressed cDNAs. Proc. Nation. Acad. Sci. USA 97(4), 1665–1670 (2000)

    Article  Google Scholar 

  4. Ben-Dor, A., Karp, R., Schwikowski, B., Yakhini, Z.: Universal DNA Tag Systems: a combinatorial design scheme. J. Comput. Biol. 7(3-4), 503–519 (2000)

    Article  Google Scholar 

  5. Wong, P.C., Wong, K.-K., Foote, H.: Organic Data Memory Using the DNA Approach. Comm. of ACM 46(1), 95–98 (2003)

    Article  Google Scholar 

  6. Allawi, H.T., SantaLucia Jr., J.: Nearest-neighbor Thermodynamics of Internal AC Mismatches in DNA: sequence dependence and pH effects. Biochemistry 37(26), 9435–9444 (1998)

    Article  Google Scholar 

  7. Golomb, S.W., Gordon, B., Welch, L.R.: Comma-Free Codes. Canadian J. of Math.  10, 202–209 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tang, B., Golomb, S.W., Graham, R.L.: A New Result on Comma-Free Codes of Even Word-Length. Canadian J. of Math. 39(3), 513–526 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Judson, H.F.: The Eighth Day of Creation: Makers of the Revolution in Biology. Cold Spring Harbor Laboratory (Original 1979; Expanded Edition 1996)

    Google Scholar 

  10. Stiffler, J.J.: Comma-Free Error-Correcting Codes. IEEE Trans. on Inform. Theor. IT-11, 107–112 (1965)

    Article  MathSciNet  Google Scholar 

  11. Stiffler, J.J.: Theory of Synchronous Communication. Prentice-Hall Inc., Englewood Cliffs (1971)

    Google Scholar 

  12. Breslauer, K.J., Frank, R., Blocker, H., Marky, L.A.: Predicting DNA Duplex Stability from the Base Sequence. Proc. Nation. Acad. Sci. USA 83(11), 3746–3750 (1986)

    Article  Google Scholar 

  13. Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Comput. 20(3), 263–277 (2002), Available as a sample paper at http://www.ohmsha.co.jp/ngc/index.htm

  14. Zuker, M., Steigler, P.: Optimal Computer Folding of Large RNA Sequences Using Thermodynamics and Auxiliary Information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

  15. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular Computation: RNA Solutions to Chess Problems. Proc. Nation. Acad. Sci. USA 97(4), 1385–1389 (2000)

    Article  Google Scholar 

  16. Frutos, A.G., Liu, Q., Thiel, A.J., Sanner, A.M., Condon, A.E., Smith, L.M., Corn, R.M.: Demonstration of a Word Design Strategy for DNA Computing on Surfaces. Nucleic Acids Res. 25(23), 4748–4757 (1997)

    Article  Google Scholar 

  17. Winfree, E., Yang, X., Seeman, N.C.: Universal Computation Via Self-assembly of DNA: some theory and experiments. In: DNA Based Computers II. DIMACS Series in Discr. Math. and Theor. Comput. Sci, vol. 44, pp. 191–213 (1998)

    Google Scholar 

  18. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and Autonomous Computing Machine Made of Biomolecules. Nature 414, 430–434 (2001)

    Article  Google Scholar 

  19. Li, M., Lee, H.J., Condon, A.E., Corn, R.M.: DNA Word Design Strategy for Creating Sets of Non-interacting Oligonucleotides for DNA Microarrays. Langmuir 18(3), 805–812 (2002)

    Article  Google Scholar 

  20. Cattell, K., Ruskey, F., Sawada, J., Serra, M.: Fast Algorithms to Generate Necklaces, Unlabeled Necklaces, and Irreducible Polynomials over GF(2). J. Algorithms 37, 267–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.R., Stevens Jr., S.E.: Good Encodings for DNA-based Solution to Combinatorial Problems. In: DNA Based Computers II. DIMACS Series in Discr. Math. and Theor. Comput. Sci., vol. 44, pp. 247–258 (1998)

    Google Scholar 

  22. Garzon, M., Neathery, P., Deaton, R., Franceschetti, D.R., Stevens Jr., S.E.: Encoding Genomes for DNA Computing. In: Proc. 3rd Annual Genet. Program. Conf., pp. 684–690. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  23. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, R.W., Adleman, L.: Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 296(5567), 499–502 (2002)

    Article  Google Scholar 

  24. Komiya, K., Sakamoto, K., Gouzu, H., Yokoyama, S., Arita, M., Nishikawa, A., Hagiya, M.: Successive State Transitions with I/O Interface by Molecules. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 17–26. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Tulpan, D.C., Hoos, H., Condon, A.: Stochastic Local Search ALgorithms for DNAWord Design. In: Proc. 8th Intern. Meeting on DNA-Based Computers, Sapporo, Japan, pp. 311–323 (2002)

    Google Scholar 

  26. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, New York (1983) (2nd reprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arita, M. (2003). Writing Information into DNA. In: Jonoska, N., Păun, G., Rozenberg, G. (eds) Aspects of Molecular Computing. Lecture Notes in Computer Science, vol 2950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24635-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24635-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20781-8

  • Online ISBN: 978-3-540-24635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics