Abstract
Given the strong interdisciplinary character of Agent-Based Social Simulation (ABSS), and the difficulties related to ambiguous terminological and methodological assumptions, there is an increasing need to make more explicit the modelling paradigm underlying each research paper or project. In this paper we propose a classification of paradigmatic models in ABSS, which characterise different ontological assumptions and pragmatic criteria with respect to their targets. The classification is composed by different classes of models at different levels of abstraction, in a layered architecture that enables switching among levels. Each class is based on different kinds of assumptions, which possibly call for different logics of scientific research. The present proposal is interesting, since the taxonomy was well validated with researchers in the field. It is a good analytical tool to characterise or compare models according to various criteria, such as methodological, philosophical, or simply pragmatic and usability criteria.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Caldas, J.C., Coelho, H.: The Origin of Institutions: Socio-Economic Processes, Choice, Norms and Conventions. Journal of Artificial Societies and Social Simulation (JASSS) 2(2) (1999), http://www.soc.surrey.ac.uk/JASSS/2/2/1.html
Castelfranchi, C., Miceli, M., Cesta, A.: Dependence Relations among Autonomous Agents. In: Castelfranchi, C., Werner, E. (eds.) MAAMAW 1992. LNCS, vol. 830, pp. 215–227. Springer, Heidelberg (1994)
Castelfranchi, C., Conte, R., Paolucci, M.: Normative Reputation and the Cost of Compliance. Journal of Artificial Societies and Social Simulation 1(3) (1998), http://www.soc.survey.ac.uk/JASSS/1/3/3.html
Conte, R., Sichman, J.S.: DEPNET: How to benefit from social dependence. Journal of Mathematical Sociology 20, 161–177 (1995)
Conte, R., Dignum, F.: From Social Monitoring to Normative Influence. Journal of Artificial Societies and Social Simulation 4(2) (2001), http://www.soc.survey.ac.uk/JASSS/4/2/7.html
Conte, R., Edmonds, B., Moss, S., Sawyer, K.: Sociology and Social Theory in Agent Based Social Simulation: A Symposium. Computational and Mathematical Organization Theory 7(3), 183–205 (2001)
CORMAS. Common-Pool Resources and Multi-Agent System (2003), http://cormas.cirad.fr
Davidsson, P., Boman, M.: Saving Energy and Providing Value Added Services in Intelligent Building: A MAS Approach. In: Mobile Agents and Applications, pp. 166–177. Springer, Heidelberg (2000)
Dean, J.S., Gumerman, G.J., Epstein, J.M., Axtell, R., Swedland, A.C., Parker, M.T., McCarpoel, S.: Undertanding Anasaki Culture Change Through Agent-Based Modeling. In: Modeling Small Scale Societies, Oxford University Press, New York (1999)
Drogoul, A., Fukuda, T., Tambe, M. (eds.): CRW 1998. LNCS, vol. 1456. Springer, Heidelberg (1998)
Edmonds, B.: The Use of Models – Making MABS more Informative. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 15–31. Springer, Heidelberg (1979)
El hadouaj, S., Drogoul, A., Espié, S.: How to Combine Reactivity and Anticipation: The Case of Conflicts Resolution in a Simulated Road Traffic. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 82–96. Springer, Heidelberg (2001)
Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. MIT Press, Cambridge (1996)
Fischwick, P.A.: A Taxonomy for Simulation Modeling Based on Programming Language Principles. IIE Transactions on IE Research 30, 811–820 (1995)
Fowler Jr., F.J.: Survey Research Methods. Sage, Thousand Oaks (1984)
Gross, D., Strand, R.: Can Agent-Based Models Assist Decisions on Large-Scale Practical Problems? A Philosophical Analysis Complexity 5(6), 26–33 (2000)
Hales, D.: An Open Mind is not an Empty Mind: Experiments in the Meta-Noosphere. Journal of Artificial Societies and Social Simulation 1(4) (1998), http://www.soc.surrey.ac.uk/JASSS/1/4/2.html
Hemelrijk, C.K.: Sexual Attraction and Inter-Sexual Dominance Among Virtual Agents. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 167–180. Springer, Heidelberg (2001)
Lovelock, J.: A Numerical Model for Biodiversity. Phil. Trans. R. Soc. Lond. 338, 365–373 (1992)
Muller, H.J., Malsch, T., Schulz-Schaeffer, I.: SOCIONICS: Introduction and Potential. JASSS 1(3) (1998), http://www.soc.survey.ac.uk/JASSS/1/3/5.html
RoboCup: Robocup Oficial Site (2003), http://www.robocup.org
Schelling, T.S.: Dynamic Models of Segregation. Journal of Mathematical Sociology 1(2), 143–186 (1971)
Sichman, J.: Du Raisonnement Social Chez les Agents. PhD Thesis, Polytechnique LAFORIA, Grenoble, France (1995) (in French)
SimCog. Simulation of Cognitive Agents (2003), http://www.lti.pcs.usp.br/SimCog
SOAR. The SOAR Home Page (2003), http://ai.eecs.umich.edu/soar/
Stalles, A., Petta, P.: Introducing Emotions into the Computational Study of Social Norms: A First Evaluation. Journal of Artificial Societies and Social Simulation 4(1) (2001), http://www.soc.surrey.ac.uk/JASSS/4/1/2.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marietto, M.B., David, N., Sichman, J.S., Coelho, H. (2003). A Classification of Paradigmatic Models for Agent-Based Social Simulation. In: Hales, D., Edmonds, B., Norling, E., Rouchier, J. (eds) Multi-Agent-Based Simulation III. MABS 2003. Lecture Notes in Computer Science(), vol 2927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24613-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-24613-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20736-8
Online ISBN: 978-3-540-24613-8
eBook Packages: Springer Book Archive