Local Consistencies in SAT | SpringerLink
Skip to main content

Local Consistencies in SAT

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2919))

Abstract

We introduce some new mappings of constraint satisfaction problems into propositional satisfiability. These encodings generalize most of the existing encodings. Unit propagation on those encodings is the same as establishing relational k -arc consistency on the original problem. They can also be used to establish (i,j)-consistency on binary constraints. Experiments show that these encodings are an effective method for enforcing such consistencies, that can lead to a reduction in runtimes at the phase transition in most cases. Compared to the more traditional (direct) encoding, the search tree can be greatly pruned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bacchus, F., Chen, X., van Beek, P., Walsh, T.: Binary vs. non-binary constraints. Artificial Intelligence 140(1-2), 1–37 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bessière, C., Chmeiss, A., Saïs, L.: Neighborhood-based variable ordering heuristics for the constraint satisfaction problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 565–569. Springer, Heidelberg (2001) (short paper)

    Chapter  Google Scholar 

  3. Bessière, C., Meseguer, P., Freuder, E.C., Larrosa, J.: On forward checking for non-binary constraint satisfaction. Artificial Intelligence 141, 205–224 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bessière, C., Régin, J.C.: MAC and combined heuristics: two reasons to forsake FC (and CBJ?) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer, Heidelberg (1996)

    Google Scholar 

  5. Bessière, C., Régin, J.C.: Refining the basic constraint propagation algorithm. In: Proceedings IJCAI 2001, pp. 309–315 (2001)

    Google Scholar 

  6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Debruyne, R.: A property of path inverse consistency leading to an optimal PIC algorithm. In: Proceedings ECAI 2000, pp. 88–92 (2000)

    Google Scholar 

  8. Dechter, R., van Beek, P.: Local and global relational consistency. Theoretical Computer Science 173(1), 283–308 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freuder, E.C.: A sufficient condition for backtrack-bounded search. Journal of the ACM 32, 755–761 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gent, I.P.: Arc consistency in SAT. In: Proceedings ECAI 2002 (2002)

    Google Scholar 

  11. Golberg, E., Novikov, Y.: Berkmin: a fast and robust sat-solver. In: Proceeding DATE 2002, pp. 142–149 (2002)

    Google Scholar 

  12. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction networks. Artificial Intelligence 45, 275–286 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nadel, B.A.: Constraint satisfaction algorithms. Computational Intelligence 5, 188–224 (1989)

    Article  Google Scholar 

  14. van Beek, P., Dechter, R.: Constraint tightness and looseness versus local and global consistency. Journal of the ACM 44, 549–566 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. van Beek, P., Wilken, K.: Fast optimal instruction scheduling for single issue processors with arbitrary latencies. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 625–639. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Verfaillie, G., Martinez, D., Bessière, C.: A generic customizable framework for inverse local consistency. In: Proceeding AAAI 1999, pp. 169–174 (1999)

    Google Scholar 

  17. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bessière, C., Hebrard, E., Walsh, T. (2004). Local Consistencies in SAT. In: Giunchiglia, E., Tacchella, A. (eds) Theory and Applications of Satisfiability Testing. SAT 2003. Lecture Notes in Computer Science, vol 2919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24605-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24605-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20851-8

  • Online ISBN: 978-3-540-24605-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics