Abstract
For a restricted class of monoids, we prove that the decidability of the existential theory of word equations is preserved under graph products. Furthermore, we show that the positive theory of a graph product of groups can be reduced to the positive theories of some of the factor monoids and the existential theories of the remaining factors. Both results also include suitable constraints for the variables. Larger classes of constraints lead in many cases to undecidability results.
Research supported by the German Research Foundation (DFG), Project GWSS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berman, L.: The complexity of logical theories. Theo. Comp. Sci. 11, 71–77 (1980)
Berstel, J.: Transductions and context–free languages. Teubner, Stuttgart (1979)
Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with rational constraints in free groups is PSPACE-complete. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 170–182. Springer, Heidelberg (2001)
Diekert, V., Lohrey, M.: A note on the existential theory of equations in plain groups. Int. J. Algebra Comput. 12(1 & 2), 1–7 (2002)
Diekert, V., Lohrey, M.: Existential and positive theories of equations in graph products. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 501–512. Springer, Heidelberg (2002)
Diekert, V., Lohrey, M.: Word equations over graph products. Manuscript available from the authors (2003)
Diekert, V., Matiyasevich, Y., Muscholl, A.: Solving word equations modulo partial commutations. Theo. Comp. Sci. 224(1-2), 215–235 (1999)
Diekert, V., Muscholl, A.: Solvability of equations in free partially commutative groups is decidable. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 543–554. Springer, Heidelberg (2001)
Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)
Durnev, V.G.: Undecidability of the positive ∀ ∃3-theory of a free semi-group. Sib. Math. J. 36(5), 1067–1080 (1995)
Feferman, S., Vaught, R.L.: The first order properties of products of algebraic systems. Fund. Mat. 47, 57–103 (1959)
Green, E.R.: Graph Products of Groups. PhD thesis, University of Leeds (1990)
Hermiller, S., Meier, J.: Algorithms and geometry for graph products of groups. J. Algebra 171, 230–257 (1995)
Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math. Sbornik 103, 147–236 (1977)
Makanin, G.S.: Decidability of the universal and positive theories of a free group. Izv. Akad. Nauk SSSR, Ser. Mat. 48, 735–749 (1984)
Muscholl, A.: Decision and Complexity Issues on Concurrent Systems. Habilitation thesis, Universität Stuttgart (1999)
Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In: Proc. FOCS 1999, pp. 495–500. IEEE Computer Society Press, Los Alamitos (1999)
Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: C. R. Congrès Math. Pays slaves, pp. 92–101 (1929)
Rips, E., Sela, Z.: Canonical representatives and equations in hyperbolic groups. Invent. Math. 120, 489–512 (1995)
Schulz, K.U.: Makanin’s algorithm for word equations — Two improvements and a generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150. Springer, Heidelberg (1992)
Sela, Z.: Diophantine geometry over groups VIII: The elementary theory of a hyperbolic group (2002), Available via http://www.ma.huji.ac.il/zlil/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Diekert, V., Lohrey, M. (2003). Word Equations over Graph Products. In: Pandya, P.K., Radhakrishnan, J. (eds) FST TCS 2003: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2003. Lecture Notes in Computer Science, vol 2914. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24597-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-24597-1_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20680-4
Online ISBN: 978-3-540-24597-1
eBook Packages: Springer Book Archive