Abstract
We present a survey of recent work on the linear complexity, the linear complexity profile, and the k-error linear complexity of sequences and on the joint linear complexity of multisequences. We also establish a new enumeration theorem on multisequences and state several open problems. The material is of relevance for the assessment of keystreams in stream ciphers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balakirsky, V.B.: Description of binary sequences based on the interval linear complexity profile. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications – SETA 2001, pp. 101–115. Springer, London (2002)
Berthé, V., Nakada, H.: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties. Expositiones Math. 18, 257–284 (2000)
Caballero-Gil, P.: Regular cosets and upper bounds on the linear complexity of certain sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 161–170. Springer, London (1999)
Caballero-Gil, P.: New upper bounds on the linear complexity. Comput. Math. Appl. 39(3-4), 31–38 (2000)
Carter, G.: Enumeration results on linear complexity profiles. In: Mitchell, C. (ed.) Cryptography and Coding II, pp. 23–34. Oxford University Press, Oxford (1992)
Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, Amsterdam (1998)
Dai, Z.D., Imamura, K.: Linear complexity of one-symbol substitution of a periodic sequence over GF(q). IEEE Trans. Inform. Theory 44, 1328–1331 (1998)
Dawson, E., Simpson, L.: Analysis and design issues for synchronous stream ciphers. In: Niederreiter, H. (ed.) Coding Theory and Cryptology, pp. 49–90. World Scientific, Singapore (2002)
Ding, C.: Binary cyclotomic generators. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 29–60. Springer, Heidelberg (1995)
Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)
Dorfer, G., Winterhof, A.: Lattice structure and linear complexity profile of nonlinear pseudorandom number generators. Applicable Algebra Engrg. Comm. Comput. 13, 499–508 (2003)
Dorfer, G., Winterhof, A.: Lattice structure of nonlinear pseudorandom number generators in parts of the period. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, Springer, Berlin (2002) (to appear)
Fell, H.J.: Linear complexity of transformed sequences. In: Charpin, P., Cohen, G. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 205–214. Springer, Heidelberg (1991)
Garcia-Villalba, L.J., Fúster-Sabater, A.: On the linear complexity of the sequences generated by nonlinear filterings. Inform. Process. Lett. 76(1-2), 67–73 (2000)
Griffin, F., Shparlinski, I.E.: On the linear complexity profile of the power generator. IEEE Trans. Inform. Theory 46, 2159–2162 (2000)
Gustavson, F.G.: Analysis of the Berlekamp-Massey linear feedback shift-register synthesis algorithm. IBM J. Res. Develop. 20, 204–212 (1976)
Gutierrez, J., Shparlinski, I.E., Winterhof, A.: On the linear and nonlinear complexity profile of nonlinear pseudorandom number generators. IEEE Trans. Inform. Theory 49, 60–64 (2003)
Hawkes, P., Rose, G.G.: Exploiting multiples of the connection polynomial in word-oriented stream ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 303–316. Springer, Heidelberg (2000)
Helleseth, T., Kim, S.-H., No, J.-S.: Linear complexity over Fp and trace representation of Lempel-Cohn-Eastman sequences. IEEE Trans. Inform. Theory 49, 1548–1552 (2003)
Houston, A.E.D.: Densities of perfect linear complexity profile binary sequences. In: Applications of Combinatorial Mathematics (Oxford, 1994). IMA Conference Series, vol. 60, pp. 119–133. Oxford University Press, Oxford (1997)
Houston, A.E.D.: On the limit of maximal density of sequences with a perfect linear complexity profile. Designs Codes Cryptogr. 10, 351–359 (1997)
Jiang, S., Dai, Z.D., Imamura, K.: Linear complexity of a sequence obtained from a periodic sequence by either substituting, inserting, or deleting k symbols within one period. IEEE Trans. Inform. Theory 46, 1174–1177 (2000)
Jungnickel, D.: Finite Fields: Structure and Arithmetics, Bibliographisches Institut, Mannheim (1993)
Kaida, T., Uehara, S., Imamura, K.: An algorithm for the k-error linear complexity of sequences over GF(pm) with period pn, p a prime. Inform. and Comput. 151, 134–147 (1999)
Kaida, T., Uehara, S., Imamura, K.: On the profile of the k-error linear complexity and the zero sum property for sequences over GF(p m) with period p n. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications – SETA 2001, pp. 218–227. Springer, London (2002)
Kohel, D., Ling, S., Xing, C.P.: Explicit sequence expansions. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 308–317. Springer, London (1999)
Kolokotronis, N., Rizomiliotis, P., Kalouptsidis, N.: First-order optimal approximation of binary sequences. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications – SETA 2001, pp. 242–256. Springer, London (2002)
Kolokotronis, N., Rizomiliotis, P., Kalouptsidis, N.: Mimimum linear span approximation of binary sequences. IEEE Trans. Inform. Theory 48, 2758–2764 (2002)
Konyagin, S., Lange, T., Shparlinski, I.E.: Linear complexity of the discrete logarithm. Designs Codes Cryptogr. 28, 135–146 (2003)
Kurosawa, K., Sato, F., Sakata, T., Kishimoto, W.: A relationship between linear complexity and k-error linear complexity. IEEE Trans. Inform. Theory 46, 694–698 (2000)
Lauder, A.G.B., Paterson, K.G.: Computing the error linear complexity spectrum of a binary sequence of period 2n. IEEE Trans. Inform. Theory 49, 273–280 (2003)
Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)
Massey, J.L., Serconek, S.: Linear complexity of periodic sequences: a general theory. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 358–371. Springer, Heidelberg (1996)
Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complexity 18, 87–103 (2002)
Meidl, W., Niederreiter, H.: Counting functions and expected values for the k-error linear complexity. Finite Fields Appl. 8, 142–154 (2002)
Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory 48, 2817–2825 (2002)
Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. J. Complexity 19, 61–72 (2003)
Meidl, W., Niederreiter, H.: Periodic sequences with maximal linear complexity and large k-error linear complexity. Applicable Algebra Engrg. Comm. Comput. (to appear)
Meidl, W., Winterhof, A.: Lower bounds on the linear complexity of the discrete logarithm in finite fields. IEEE Trans. Inform. Theory 47, 2807–2811 (2001)
Meidl, W., Winterhof, A.: On the linear complexity profile of explicit nonlinear pseudorandom numbers. Inform. Process. Lett. 85, 13–18 (2003)
Niederreiter, H.: The probabilistic theory of linear complexity. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 191–209. Springer, Heidelberg (1988)
Niederreiter, H.: Finite fields and cryptology. In: Mullen, G.L., Shiue, P.J.-S. (eds.) Finite Fields, Coding Theory, and Advances in Communications and Computing, pp. 359–373. Dekker, New York (1993)
Niederreiter, H.: Some computable complexity measures for binary sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 67–78. Springer, London (1999)
Niederreiter, H.: Periodic sequences with large k-error linear complexity. IEEE Trans. Inform. Theory 49, 501–505 (2003)
Niederreiter, H., Paschinger, H.: Counting functions and expected values in the stability theory of stream ciphers. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 318–329. Springer, London (1999)
Niederreiter, H., Shparlinski, I.E.: Periodic sequences with maximal linear complexity and almost maximal k-error linear complexity. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 183–189. Springer, Heidelberg (2003) (to appear)
Niederreiter, H., Vielhaber, M.: Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles. J. Complexity 13, 353–383 (1997)
Niederreiter, H., Vielhaber, M.: An algorithm for shifted continued fraction expansions in parallel linear time. Theoretical Computer Science 226, 93–104 (1999)
Niederreiter, H., Winterhof, A.: Lattice structure and linear complexity of nonlinear pseudorandom numbers. Applicable Algebra Engrg. Comm. Comput. 13, 319–326 (2002)
Niederreiter, H., Xing, C.P.: Rational Points on Curves over Finite Fields: Theory and Applications. London Math. Soc. Lecture Note Series, vol. 285. Cambridge University Press, Cambridge (2001)
Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)
Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 65–134. IEEE Press, New York (1992)
Shparlinski, I.E.: Number Theoretic Methods in Cryptography: Complexity Lower Bounds. Birkhäuser, Basel (1999)
Shparlinski, I.E.: Linear complexity of the Naor-Reingold pseudo-random function. Inform. Process. Lett. 76(3), 95–99 (2000)
Shparlinski, I.E.: On the linear complexity of the power generator. Designs Codes Cryptogr. 23, 5–10 (2001)
Shparlinski, I.E.: Cryptographic Applications of Analytic Number Theory: Complexity Lower Bounds and Pseudorandomness. Birkhäuser, Basel (2003)
Shparlinski, I.E., Silverman, J.H.: On the linear complexity of the Naor-Reingold pseudo-random function from elliptic curves. Designs Codes Cryptogr. 24, 279–289 (2001)
Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Trans. Inform. Theory 39, 1398–1401 (1993)
Tan, C.H.: Period and linear complexity of cascaded clock-controlled generators. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 371–378. Springer, London (1999)
Xiao, G., Wei, S.: Fast algorithms for determining the linear complexity of period sequences. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 12–21. Springer, Heidelberg (2002)
Xing, C.P.: Multi-sequences with almost perfect linear complexity profile and function fields over finite fields. J. Complexity 16, 661–675 (2000)
Xing, C.P.: Applications of algebraic curves to constructions of sequences. In: Lam, K.Y., et al. (eds.) Cryptography and Computational Number Theory, pp. 137–146. Birkhäuser, Basel (2001)
Xing, C.P.: Constructions of sequences from algebraic curves over finite fields. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications – SETA 2001, pp. 88–100. Springer, London (2002)
Xing, C.P., Lam, K.Y.: Sequences with almost perfect linear complexity profiles and curves over finite fields. IEEE Trans. Inform. Theory 45, 1267–1270 (1999)
Xing, C.P., Lam, K.Y., Wei, Z.H.: A class of explicit perfect multi-sequences. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 299–305. Springer, Heidelberg (1999)
Xing, C.P., Niederreiter, H.: Applications of algebraic curves to constructions of codes and almost perfect sequences. In: Jungnickel, D., Niederreiter, H. (eds.) Finite Fields and Applications, pp. 475–489. Springer, Berlin (2001)
Xing, C.P., Niederreiter, H., Lam, K.Y., Ding, C.: Constructions of sequences with almost perfect linear complexity profile from curves over finite fields. Finite Fields Appl. 5, 301–313 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Niederreiter, H. (2003). Linear Complexity and Related Complexity Measures for Sequences. In: Johansson, T., Maitra, S. (eds) Progress in Cryptology - INDOCRYPT 2003. INDOCRYPT 2003. Lecture Notes in Computer Science, vol 2904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24582-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-24582-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20609-5
Online ISBN: 978-3-540-24582-7
eBook Packages: Springer Book Archive