Linear Complexity and Related Complexity Measures for Sequences | SpringerLink
Skip to main content

Linear Complexity and Related Complexity Measures for Sequences

  • Conference paper
Progress in Cryptology - INDOCRYPT 2003 (INDOCRYPT 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2904))

Included in the following conference series:

Abstract

We present a survey of recent work on the linear complexity, the linear complexity profile, and the k-error linear complexity of sequences and on the joint linear complexity of multisequences. We also establish a new enumeration theorem on multisequences and state several open problems. The material is of relevance for the assessment of keystreams in stream ciphers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balakirsky, V.B.: Description of binary sequences based on the interval linear complexity profile. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications – SETA 2001, pp. 101–115. Springer, London (2002)

    Google Scholar 

  2. Berthé, V., Nakada, H.: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties. Expositiones Math. 18, 257–284 (2000)

    MATH  Google Scholar 

  3. Caballero-Gil, P.: Regular cosets and upper bounds on the linear complexity of certain sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 161–170. Springer, London (1999)

    Google Scholar 

  4. Caballero-Gil, P.: New upper bounds on the linear complexity. Comput. Math. Appl. 39(3-4), 31–38 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carter, G.: Enumeration results on linear complexity profiles. In: Mitchell, C. (ed.) Cryptography and Coding II, pp. 23–34. Oxford University Press, Oxford (1992)

    Google Scholar 

  6. Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  7. Dai, Z.D., Imamura, K.: Linear complexity of one-symbol substitution of a periodic sequence over GF(q). IEEE Trans. Inform. Theory 44, 1328–1331 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dawson, E., Simpson, L.: Analysis and design issues for synchronous stream ciphers. In: Niederreiter, H. (ed.) Coding Theory and Cryptology, pp. 49–90. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  9. Ding, C.: Binary cyclotomic generators. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 29–60. Springer, Heidelberg (1995)

    Google Scholar 

  10. Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  11. Dorfer, G., Winterhof, A.: Lattice structure and linear complexity profile of nonlinear pseudorandom number generators. Applicable Algebra Engrg. Comm. Comput. 13, 499–508 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dorfer, G., Winterhof, A.: Lattice structure of nonlinear pseudorandom number generators in parts of the period. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, Springer, Berlin (2002) (to appear)

    Google Scholar 

  13. Fell, H.J.: Linear complexity of transformed sequences. In: Charpin, P., Cohen, G. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 205–214. Springer, Heidelberg (1991)

    Google Scholar 

  14. Garcia-Villalba, L.J., Fúster-Sabater, A.: On the linear complexity of the sequences generated by nonlinear filterings. Inform. Process. Lett. 76(1-2), 67–73 (2000)

    Article  MathSciNet  Google Scholar 

  15. Griffin, F., Shparlinski, I.E.: On the linear complexity profile of the power generator. IEEE Trans. Inform. Theory 46, 2159–2162 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gustavson, F.G.: Analysis of the Berlekamp-Massey linear feedback shift-register synthesis algorithm. IBM J. Res. Develop. 20, 204–212 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gutierrez, J., Shparlinski, I.E., Winterhof, A.: On the linear and nonlinear complexity profile of nonlinear pseudorandom number generators. IEEE Trans. Inform. Theory 49, 60–64 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hawkes, P., Rose, G.G.: Exploiting multiples of the connection polynomial in word-oriented stream ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 303–316. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Helleseth, T., Kim, S.-H., No, J.-S.: Linear complexity over Fp and trace representation of Lempel-Cohn-Eastman sequences. IEEE Trans. Inform. Theory 49, 1548–1552 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Houston, A.E.D.: Densities of perfect linear complexity profile binary sequences. In: Applications of Combinatorial Mathematics (Oxford, 1994). IMA Conference Series, vol. 60, pp. 119–133. Oxford University Press, Oxford (1997)

    Google Scholar 

  21. Houston, A.E.D.: On the limit of maximal density of sequences with a perfect linear complexity profile. Designs Codes Cryptogr. 10, 351–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiang, S., Dai, Z.D., Imamura, K.: Linear complexity of a sequence obtained from a periodic sequence by either substituting, inserting, or deleting k symbols within one period. IEEE Trans. Inform. Theory 46, 1174–1177 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jungnickel, D.: Finite Fields: Structure and Arithmetics, Bibliographisches Institut, Mannheim (1993)

    Google Scholar 

  24. Kaida, T., Uehara, S., Imamura, K.: An algorithm for the k-error linear complexity of sequences over GF(pm) with period pn, p a prime. Inform. and Comput. 151, 134–147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kaida, T., Uehara, S., Imamura, K.: On the profile of the k-error linear complexity and the zero sum property for sequences over GF(p m) with period p n. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications – SETA 2001, pp. 218–227. Springer, London (2002)

    Google Scholar 

  26. Kohel, D., Ling, S., Xing, C.P.: Explicit sequence expansions. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 308–317. Springer, London (1999)

    Google Scholar 

  27. Kolokotronis, N., Rizomiliotis, P., Kalouptsidis, N.: First-order optimal approximation of binary sequences. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications – SETA 2001, pp. 242–256. Springer, London (2002)

    Google Scholar 

  28. Kolokotronis, N., Rizomiliotis, P., Kalouptsidis, N.: Mimimum linear span approximation of binary sequences. IEEE Trans. Inform. Theory 48, 2758–2764 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Konyagin, S., Lange, T., Shparlinski, I.E.: Linear complexity of the discrete logarithm. Designs Codes Cryptogr. 28, 135–146 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kurosawa, K., Sato, F., Sakata, T., Kishimoto, W.: A relationship between linear complexity and k-error linear complexity. IEEE Trans. Inform. Theory 46, 694–698 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lauder, A.G.B., Paterson, K.G.: Computing the error linear complexity spectrum of a binary sequence of period 2n. IEEE Trans. Inform. Theory 49, 273–280 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  33. Massey, J.L., Serconek, S.: Linear complexity of periodic sequences: a general theory. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 358–371. Springer, Heidelberg (1996)

    Google Scholar 

  34. Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complexity 18, 87–103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Meidl, W., Niederreiter, H.: Counting functions and expected values for the k-error linear complexity. Finite Fields Appl. 8, 142–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory 48, 2817–2825 (2002)

    Article  MathSciNet  Google Scholar 

  37. Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. J. Complexity 19, 61–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Meidl, W., Niederreiter, H.: Periodic sequences with maximal linear complexity and large k-error linear complexity. Applicable Algebra Engrg. Comm. Comput. (to appear)

    Google Scholar 

  39. Meidl, W., Winterhof, A.: Lower bounds on the linear complexity of the discrete logarithm in finite fields. IEEE Trans. Inform. Theory 47, 2807–2811 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Meidl, W., Winterhof, A.: On the linear complexity profile of explicit nonlinear pseudorandom numbers. Inform. Process. Lett. 85, 13–18 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Niederreiter, H.: The probabilistic theory of linear complexity. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 191–209. Springer, Heidelberg (1988)

    Google Scholar 

  42. Niederreiter, H.: Finite fields and cryptology. In: Mullen, G.L., Shiue, P.J.-S. (eds.) Finite Fields, Coding Theory, and Advances in Communications and Computing, pp. 359–373. Dekker, New York (1993)

    Google Scholar 

  43. Niederreiter, H.: Some computable complexity measures for binary sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 67–78. Springer, London (1999)

    Google Scholar 

  44. Niederreiter, H.: Periodic sequences with large k-error linear complexity. IEEE Trans. Inform. Theory 49, 501–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  45. Niederreiter, H., Paschinger, H.: Counting functions and expected values in the stability theory of stream ciphers. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 318–329. Springer, London (1999)

    Google Scholar 

  46. Niederreiter, H., Shparlinski, I.E.: Periodic sequences with maximal linear complexity and almost maximal k-error linear complexity. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 183–189. Springer, Heidelberg (2003) (to appear)

    Chapter  Google Scholar 

  47. Niederreiter, H., Vielhaber, M.: Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles. J. Complexity 13, 353–383 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  48. Niederreiter, H., Vielhaber, M.: An algorithm for shifted continued fraction expansions in parallel linear time. Theoretical Computer Science 226, 93–104 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Niederreiter, H., Winterhof, A.: Lattice structure and linear complexity of nonlinear pseudorandom numbers. Applicable Algebra Engrg. Comm. Comput. 13, 319–326 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Niederreiter, H., Xing, C.P.: Rational Points on Curves over Finite Fields: Theory and Applications. London Math. Soc. Lecture Note Series, vol. 285. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  51. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)

    MATH  Google Scholar 

  52. Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 65–134. IEEE Press, New York (1992)

    Google Scholar 

  53. Shparlinski, I.E.: Number Theoretic Methods in Cryptography: Complexity Lower Bounds. Birkhäuser, Basel (1999)

    MATH  Google Scholar 

  54. Shparlinski, I.E.: Linear complexity of the Naor-Reingold pseudo-random function. Inform. Process. Lett. 76(3), 95–99 (2000)

    Article  MathSciNet  Google Scholar 

  55. Shparlinski, I.E.: On the linear complexity of the power generator. Designs Codes Cryptogr. 23, 5–10 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  56. Shparlinski, I.E.: Cryptographic Applications of Analytic Number Theory: Complexity Lower Bounds and Pseudorandomness. Birkhäuser, Basel (2003)

    Google Scholar 

  57. Shparlinski, I.E., Silverman, J.H.: On the linear complexity of the Naor-Reingold pseudo-random function from elliptic curves. Designs Codes Cryptogr. 24, 279–289 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  58. Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Trans. Inform. Theory 39, 1398–1401 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  59. Tan, C.H.: Period and linear complexity of cascaded clock-controlled generators. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 371–378. Springer, London (1999)

    Google Scholar 

  60. Xiao, G., Wei, S.: Fast algorithms for determining the linear complexity of period sequences. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 12–21. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  61. Xing, C.P.: Multi-sequences with almost perfect linear complexity profile and function fields over finite fields. J. Complexity 16, 661–675 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  62. Xing, C.P.: Applications of algebraic curves to constructions of sequences. In: Lam, K.Y., et al. (eds.) Cryptography and Computational Number Theory, pp. 137–146. Birkhäuser, Basel (2001)

    Google Scholar 

  63. Xing, C.P.: Constructions of sequences from algebraic curves over finite fields. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) Sequences and Their Applications – SETA 2001, pp. 88–100. Springer, London (2002)

    Google Scholar 

  64. Xing, C.P., Lam, K.Y.: Sequences with almost perfect linear complexity profiles and curves over finite fields. IEEE Trans. Inform. Theory 45, 1267–1270 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  65. Xing, C.P., Lam, K.Y., Wei, Z.H.: A class of explicit perfect multi-sequences. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 299–305. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  66. Xing, C.P., Niederreiter, H.: Applications of algebraic curves to constructions of codes and almost perfect sequences. In: Jungnickel, D., Niederreiter, H. (eds.) Finite Fields and Applications, pp. 475–489. Springer, Berlin (2001)

    Google Scholar 

  67. Xing, C.P., Niederreiter, H., Lam, K.Y., Ding, C.: Constructions of sequences with almost perfect linear complexity profile from curves over finite fields. Finite Fields Appl. 5, 301–313 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niederreiter, H. (2003). Linear Complexity and Related Complexity Measures for Sequences. In: Johansson, T., Maitra, S. (eds) Progress in Cryptology - INDOCRYPT 2003. INDOCRYPT 2003. Lecture Notes in Computer Science, vol 2904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24582-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24582-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20609-5

  • Online ISBN: 978-3-540-24582-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics