Cloud Robotic Platform on Basis of Fog Computing Approach | SpringerLink
Skip to main content

Cloud Robotic Platform on Basis of Fog Computing Approach

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11097))

Included in the following conference series:

Abstract

This article describes the possibility of using the ideas of FOG computing as an additional layer between robotic devices and the cloud infrastructure. FOG layer, represented as a P2P network in combination with the containerized cloud infrastructure inspired by microservice patterns, provides the ability to process data based on its time-sensitivity and to increase overall benefits despite the fact of exponential growth of data. We consider that the solution of assignment problem obtained in terms of the platform is one of the keys to achieve the goal of data analysis close to devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mung, C.: Fog networking: an overview on research opportunities. Princeton University (2015)

    Google Scholar 

  2. Fog Computing and the Internet of Things: Extend the cloud to where the things are. Cisco Whitepaper, 6 p (2015)

    Google Scholar 

  3. Francesco, P., et al.: Research on architecting microservices: trends, focus, and potential for industrial adoption. In: 2017 IEEE International Conference on Software Architecture (ICSA), pp. 21–30. IEEE (2017)

    Google Scholar 

  4. Bertsekas, D.P.: Auction algorithms for network flow problems. Comput. Optim. Appl. 1(1), 7–66 (1992)

    Article  MathSciNet  Google Scholar 

  5. Osipov, Yu.M.: Modern problems of innovation: the manual. TUSUR, Tomsk, 140 p (2012). https://edu.tusur.ru/publications/1056

  6. Zaharia, M., et al.: Spark: cluster computing with working sets. HotCloud 2010, vol. 10, 95 p (2010)

    Google Scholar 

  7. Data Age 2025: The Evolution of Data to Life-Critical. An IDC White Paper sponsored by Seagate, 25 p. April 2017

    Google Scholar 

  8. Zavlanos, M.M., Spesivtsev L., Pappas G.J.: A distributed auction algorithm for the assignment problem. In: 47th IEEE Conference on Decision and Control, CDC 2008, pp. 1212–1217 (2008)

    Google Scholar 

  9. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  10. Smith, S.L., Bullo, F.: Target assignment for robotic networks: worst case and stochastic performance in dense environments. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, pp. 3585–3590 (2007)

    Google Scholar 

  11. Balinski, M.L.: Signature methods for the assignment problem. J. Oper. Res. 33, 527–537 (1985)

    Article  MathSciNet  Google Scholar 

  12. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  13. Bertsekas, D.P., Castanon, D.A.: Parallel synchronous and asynchronous implementations of the auction algorithm. Parallel Comput. 17, 707–732 (1991)

    Article  Google Scholar 

  14. Kostyuchenko, E., Gurakov, M., Krivonosov, E., Tomyshev, M., Mescheryakov, R., Hodashinskiy, I.: Integration of Bayesian classifier and perceptron for problem identification on dynamics signature using a genetic algorithm for the identification threshold selection. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 620–627. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40663-3_71

    Chapter  Google Scholar 

  15. Khodashinsky, I.A., Meshcheryakov, R.V., Anfilofiev, A.E.: Identification of fuzzy classifiers based on weed optimization algorithm. In: Kravets, A., Shcherbakov, M., Kultsova, M., Shabalina, O. (eds.) CIT&DS 2015. CCIS, vol. 535, pp. 216–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23766-4_18

    Chapter  Google Scholar 

  16. Khodashinsky, I.A., Zemtsov, N.N., Meshcheryakov, R.V.: Construction of fuzzy approximators based on the bacterial foraging method. Russ. Phys. J. 55(3), 301–305 (2012)

    Article  Google Scholar 

  17. Osipov, O.Yu., Osipov, Yu.M., Meshcheryakov, R.V.: Active driveline as an element of cyberphysical system. In: Proceedings of the Higher Educational Institutions (2016). Instrument 59(11), 934–938

    Google Scholar 

  18. Vasiliev, A.V., Kondratyev, A.S., Gradovtsev, A.A., Dalyaev, IYu.: Research and development of design shape of a mobile robotic system for geological exploration on the moon’s surface. SPIIRAS Proc. 45(2), 141–156 (2016). https://doi.org/10.15622/sp.45.9

    Article  Google Scholar 

  19. Kryuchkov, B.I., Karpov, A.A., Usov, V.M.: Promising approaches for the use of service robots in the domain of manned space exploration. SPIIRAS Proc. 32(1), 125–151 (2014). https://doi.org/10.15622/sp.32.9

    Article  Google Scholar 

  20. Motienko, A.I., Tarasov, A.G., Dorozhko, I.V., Basov, O.O.: Proactive control of robotic systems for rescue operations. SPIIRAS Proc. 46(3), 169–189 (2016). https://doi.org/10.15622/sp.46.12

    Article  Google Scholar 

  21. Ronzhin, A., Saveliev, A., Basov, O., Solyonyj, S.: Conceptual model of cyberphysical environment based on collaborative work of distributed means and mobile robots. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2016. LNCS (LNAI), vol. 9812, pp. 32–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43955-6_5

    Chapter  Google Scholar 

Download references

Acknowledgements

The given paper is completed with the support of the Ministry of Education and Science of the Russian Federation within the limits of the project part of the state assignment of TUSUR in 2017 and 2019 (project 2.3583.2017) and science school (№ NSH-3070.2018.8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleksandr Chueshev , Olga Melekhova or Roman Meshcheryakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chueshev, A., Melekhova, O., Meshcheryakov, R. (2018). Cloud Robotic Platform on Basis of Fog Computing Approach. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2018. Lecture Notes in Computer Science(), vol 11097. Springer, Cham. https://doi.org/10.1007/978-3-319-99582-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99582-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99581-6

  • Online ISBN: 978-3-319-99582-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics