Bundles: A Framework to Optimise Topic Analysis in Real-Time Chat Discourse | SpringerLink
Skip to main content

Bundles: A Framework to Optimise Topic Analysis in Real-Time Chat Discourse

  • Conference paper
  • First Online:
Collaboration and Technology (CRIWG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11001))

Included in the following conference series:

  • 639 Accesses

Abstract

Collaborative chat tools and large text corpora are ubiquitous in today’s world of real-time communication. As micro teams and start-ups adopt such tools, there is a need to understand the meaning (even at a high level) of chat conversations within collaborative teams. In this study, we propose a technique to segment chat conversations to increase the number of words available (19% on average) for text mining purposes. Using an open source dataset, we answer the question of whether having more words available for text mining can produce more useful information to the end user. Our technique can help micro-teams and start-ups with limited resources to efficiently model their conversations to afford a higher degree of readability and comprehension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fitting Linear Models. http://bit.ly/2dvqYet

  2. Texting Statistics (2015). http://bit.ly/2kjHeF8

  3. Improving the Consumer E-commerce Experience Through Text Mining (2015). http://bit.ly/2z8eYyv

  4. We Just Don’t Speak Anymore (2015). http://bit.ly/2yDXzJ6

  5. Expect More Chatbots (2016). http://bit.ly/2z771cJ

  6. How to Deal with Social Media Overwhelm (2016). http://bit.ly/2yN5e8r

  7. Gain Business Insight with Big Data (2017). http://bit.ly/2zPxmcC

  8. Qualitative Sample Size (2017). http://bit.ly/2hWeh3R

  9. Social Messaging: Catalysing the Next Wave of Digital Revolution in Communication (2017). http://bit.ly/2FekIpz

  10. Stopword Lists (2017). http://bit.ly/2jwKvDa

  11. Ubuntu IRC Logs (2017). https://irclogs.ubuntu.com/

  12. The Value and Benefits of Text Mining (2017). http://bit.ly/2zJcDcl

  13. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  14. Coleman, M., Liau, T.L.: A computer readability formula designed for machine scoring. J. Appl. Psychol. 60(2), 283 (1975)

    Article  Google Scholar 

  15. Dale, E., Chall, J.S.: A formula for predicting readability: instructions. Educ. Res. Bull. 27, 37–54 (1948)

    Google Scholar 

  16. Diao, Q., Jiang, J., Zhu, F., Lim, E.P.: Finding bursty topics from microblogs. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 536–544. Association for Computational Linguistics (2012)

    Google Scholar 

  17. Galton, F.: Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. Great Br. Irel. 15, 246–263 (1886)

    Article  Google Scholar 

  18. Gunning, R.: The Technique of Clear Writing. McGraw-Hill, New York (1952)

    Google Scholar 

  19. Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 289–296. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  20. Jivani, A.G., et al.: A comparative study of stemming algorithms. Int. J. Comput. Technol. Appl. 2(6), 1930–1938 (2011)

    Google Scholar 

  21. Jurafsky, D., Martin, J.H.: Speech and Language Processing, vol. 3. Pearson, London (2014)

    Google Scholar 

  22. Kincaid, J.P., Fishburne Jr., R.P., Rogers, R.L., Chissom, B.S.: Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. Technical report, Naval Technical Training Command Millington TN Research Branch (1975)

    Google Scholar 

  23. Kučera, H., Francis, W.N.: Computational Analysis of Present-Day American English. Dartmouth Publishing Group, London (1967)

    Google Scholar 

  24. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)

    Article  Google Scholar 

  25. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  26. Lovins, J.B.: Development of a stemming algorithm. Mech. Transl. Comput. Linguist. 11(1–2), 22–31 (1968)

    Google Scholar 

  27. Luhn, H.P.: Key word-in-context index for technical literature (KWIC index). J. Assoc. Inf. Sci. Technol. 11(4), 288–295 (1960)

    Google Scholar 

  28. Manning, D.A.C.: Introduction. In: Manning, D.A.C. (ed.) Introduction to Industrial Minerals, pp. 1–16. Springer, Dordrecht (1995). https://doi.org/10.1007/978-94-011-1242-0_1

    Chapter  Google Scholar 

  29. Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Searching microblogs: coping with sparsity and document quality. In: Proceedings of the 20th Acm International Conference on Information and Knowledge Management, pp. 183–188. ACM (2011)

    Google Scholar 

  30. Schofield, A., Mimno, D.: Comparing apples to apple: the effects of stemmers on topic models. Trans. Assoc. Comput. Linguist. 4, 287–300 (2016)

    Google Scholar 

  31. Sridhar, V.K.R.: Unsupervised topic modeling for short texts using distributed representations of words. In: VS@ HLT-NAACL, pp. 192–200 (2015)

    Google Scholar 

  32. Webster, J.J., Kit, C.: Tokenization as the initial phase in NLP. In: Proceedings of the 14th Conference on Computational Linguistics, vol. 4, pp. 1106–1110. Association for Computational Linguistics (1992)

    Google Scholar 

  33. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1445–1456. ACM (2013)

    Google Scholar 

  34. Yan, X., Guo, J., Lan, Y., Xu, J., Cheng, X.: A probabilistic model for bursty topic discovery in microblogs. In: AAAI, pp. 353–359 (2015)

    Google Scholar 

  35. Yin, J., Wang, J.: A Dirichlet multinomial mixture model-based approach for short text clustering. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 233–242. ACM (2014)

    Google Scholar 

  36. Zuo, Y., et al.: Topic modeling of short texts: a pseudo-document view. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2105–2114. ACM (2016)

    Google Scholar 

Download references

Acknlowdgements

The authors would like to personally thank the 24 individuals who took part in our topic modelling comprehension experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Dunne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dunne, J., Malone, D., Penrose, A. (2018). Bundles: A Framework to Optimise Topic Analysis in Real-Time Chat Discourse. In: Rodrigues, A., Fonseca, B., Preguiça, N. (eds) Collaboration and Technology. CRIWG 2018. Lecture Notes in Computer Science(), vol 11001. Springer, Cham. https://doi.org/10.1007/978-3-319-99504-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99504-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99503-8

  • Online ISBN: 978-3-319-99504-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics