Abstract
Short-term prediction of stock market trend has potential application for personal investment without high-frequency-trading infrastructure. Existing studies on stock market trend prediction have introduced machine learning methods with handcrafted features. However, manual labor spent on handcrafting features is expensive. To reduce manual labor, we propose a novel recurrent convolutional neural network for predicting stock market trend. Our network can automatically capture useful information from news on stock market without any handcrafted feature. In our network, we first introduce an entity embedding layer to automatically learn entity embedding using financial news. We then use a convolutional layer to extract key information affecting stock market trend, and use a long short-term memory neural network to learn context-dependent relations in financial news for stock market trend prediction. Experimental results show that our model can achieve significant improvement in terms of both overall prediction and individual stock predictions, compared with the state-of-the-art baseline methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting stock market movement direction with support vector machine. Comput. Oper. Res. 32(10), 2513–2522 (2005)
Lee, M.C.: Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Syst. Appl. 36(8), 10896–10904 (2009)
Ni, L.P., Ni, Z.W., Gao, Y.Z.: Stock trend prediction based on fractal feature selection and support vector machine. Expert Syst. Appl. 38(5), 5569–5576 (2011)
Yu, L., Wang, S., Lai, K.K.: Mining stock market tendency using GA-based support vector machines. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 336–345. Springer, Heidelberg (2005). https://doi.org/10.1007/11600930_33
Chai, J., Du, J., Lai, K.K., et al.: A hybrid least square support vector machine model with parameters optimization for stock forecasting. Math. Probl. Eng. 2015, 1–7 (2015)
Marković, I., Stojanović, M., Božić, M., Stanković, J.: Stock market trend prediction based on the LS-SVM model update algorithm. In: Bogdanova, A.M., Gjorgjevikj, D. (eds.) ICT Innovations 2014. AISC, vol. 311, pp. 105–114. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09879-1_11
Yu, L., Chen, H., Wang, S., et al.: Evolving least squares support vector machines for stock market trend mining. IEEE Trans. Evol. Comput. 13(1), 87–102 (2009)
Crone, S.F., Kourentzes, N.: Feature selection for time series prediction – a combined filter and wrapper approach for neural networks. Neurocomputing 73(10), 1923–1936 (2010)
Dai, W., Wu, J.Y., Lu, C.J.: Combining Nonlinear Independent Component Analysis and Neural Network for the Prediction of Asian Stock Market Indexes. Pergamon Press Inc., Tarrytown (2012)
Kara, Y., Acar Boyacioglu, M., Baykan, Ö.K.: Predicting direction of stock price index movement using artificial neural networks and support vector machines. Expert Syst. Appl. 38(5), 5311–5319 (2011)
Kogan, S., Levin, D., Routledge, B.R., et al.: Predicting risk from financial reports with regression. In: North American Chapter of the Association for Computational Linguistics, pp. 272–280 (2009)
Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using financial news articles. In: Americas Conference on Information Systems (2006)
Hsieh, T.J., Hsiao, H.F., Yeh, W.C.: Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2510–2525 (2011)
Ding, X., Zhang, Y., Liu, T., et al.: Deep learning for event-driven stock prediction. In: Ijcai, pp. 2327–2333 2015
dos Santos, C.N., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: COLING, pp. 69–78 (2014)
Xie, B., Passonneau, R.J., Wu, L., Creamer, G.G.: Semantic frames to predict stock price movement. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pp. 873–883 (2013)
Martin, L., Lars, K., Amy, L.: A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit. Lett. 42, 11–24 (2014)
Ding, X., Zhang, Y., Liu, T., Duan, J.: Using structured events to predict stock price movement: an empirical investigation. In: EMNLP, pp. 1415–1425 (2014)
Schmidhuber, J., Hochreiter, S.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Guo, C., Berkhahn, F.: Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737 (2016)
Tetlock, P.C., Saar Tsechansky, M., Macskassy, S.: More than words: quantifying language to measure firms’ fundamentals. J. Finance 63(3), 1437–1467 (2008)
Radinsky, K., Davidovich, S., Markovitch, S.: Learning causality for news events prediction. In: Proceedings of the 21st International Conference on World Wide Web, pp. 909–918. ACM (2012)
Luss, R., d’Aspremont, A.: Predicting abnormal returns from news using text classification. Quant. Finance 15(6), 999–1012 (2015)
Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: Conference on Artificial Intelligence (No. EPFL-CONF-192344) (2011)
Acknowledgements
This work is partially supported by grant from the Natural Science Foundation of China (No. 61632011, 61572102, 61702080, 61602079, 61562080), State Education Ministry and The Research Fund for the Doctoral Program of Higher Education (No. 20090041110002), the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, B., Zhang, D., Zhang, S., Li, H., Lin, H. (2018). Stock Market Trend Prediction Using Recurrent Convolutional Neural Networks. In: Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2018. Lecture Notes in Computer Science(), vol 11109. Springer, Cham. https://doi.org/10.1007/978-3-319-99501-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-99501-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99500-7
Online ISBN: 978-3-319-99501-4
eBook Packages: Computer ScienceComputer Science (R0)