Stock Market Trend Prediction Using Recurrent Convolutional Neural Networks | SpringerLink
Skip to main content

Stock Market Trend Prediction Using Recurrent Convolutional Neural Networks

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11109))

Abstract

Short-term prediction of stock market trend has potential application for personal investment without high-frequency-trading infrastructure. Existing studies on stock market trend prediction have introduced machine learning methods with handcrafted features. However, manual labor spent on handcrafting features is expensive. To reduce manual labor, we propose a novel recurrent convolutional neural network for predicting stock market trend. Our network can automatically capture useful information from news on stock market without any handcrafted feature. In our network, we first introduce an entity embedding layer to automatically learn entity embedding using financial news. We then use a convolutional layer to extract key information affecting stock market trend, and use a long short-term memory neural network to learn context-dependent relations in financial news for stock market trend prediction. Experimental results show that our model can achieve significant improvement in terms of both overall prediction and individual stock predictions, compared with the state-of-the-art baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://finance.yahoo.com/.

  2. 2.

    http://fortune.com/.

References

  1. Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting stock market movement direction with support vector machine. Comput. Oper. Res. 32(10), 2513–2522 (2005)

    Article  Google Scholar 

  2. Lee, M.C.: Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Syst. Appl. 36(8), 10896–10904 (2009)

    Article  Google Scholar 

  3. Ni, L.P., Ni, Z.W., Gao, Y.Z.: Stock trend prediction based on fractal feature selection and support vector machine. Expert Syst. Appl. 38(5), 5569–5576 (2011)

    Article  Google Scholar 

  4. Yu, L., Wang, S., Lai, K.K.: Mining stock market tendency using GA-based support vector machines. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 336–345. Springer, Heidelberg (2005). https://doi.org/10.1007/11600930_33

    Chapter  Google Scholar 

  5. Chai, J., Du, J., Lai, K.K., et al.: A hybrid least square support vector machine model with parameters optimization for stock forecasting. Math. Probl. Eng. 2015, 1–7 (2015)

    Article  Google Scholar 

  6. Marković, I., Stojanović, M., Božić, M., Stanković, J.: Stock market trend prediction based on the LS-SVM model update algorithm. In: Bogdanova, A.M., Gjorgjevikj, D. (eds.) ICT Innovations 2014. AISC, vol. 311, pp. 105–114. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09879-1_11

    Chapter  Google Scholar 

  7. Yu, L., Chen, H., Wang, S., et al.: Evolving least squares support vector machines for stock market trend mining. IEEE Trans. Evol. Comput. 13(1), 87–102 (2009)

    Article  Google Scholar 

  8. Crone, S.F., Kourentzes, N.: Feature selection for time series prediction – a combined filter and wrapper approach for neural networks. Neurocomputing 73(10), 1923–1936 (2010)

    Article  Google Scholar 

  9. Dai, W., Wu, J.Y., Lu, C.J.: Combining Nonlinear Independent Component Analysis and Neural Network for the Prediction of Asian Stock Market Indexes. Pergamon Press Inc., Tarrytown (2012)

    Google Scholar 

  10. Kara, Y., Acar Boyacioglu, M., Baykan, Ö.K.: Predicting direction of stock price index movement using artificial neural networks and support vector machines. Expert Syst. Appl. 38(5), 5311–5319 (2011)

    Article  Google Scholar 

  11. Kogan, S., Levin, D., Routledge, B.R., et al.: Predicting risk from financial reports with regression. In: North American Chapter of the Association for Computational Linguistics, pp. 272–280 (2009)

    Google Scholar 

  12. Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using financial news articles. In: Americas Conference on Information Systems (2006)

    Google Scholar 

  13. Hsieh, T.J., Hsiao, H.F., Yeh, W.C.: Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2510–2525 (2011)

    Article  Google Scholar 

  14. Ding, X., Zhang, Y., Liu, T., et al.: Deep learning for event-driven stock prediction. In: Ijcai, pp. 2327–2333 2015

    Google Scholar 

  15. dos Santos, C.N., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: COLING, pp. 69–78 (2014)

    Google Scholar 

  16. Xie, B., Passonneau, R.J., Wu, L., Creamer, G.G.: Semantic frames to predict stock price movement. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pp. 873–883 (2013)

    Google Scholar 

  17. Martin, L., Lars, K., Amy, L.: A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit. Lett. 42, 11–24 (2014)

    Article  Google Scholar 

  18. Ding, X., Zhang, Y., Liu, T., Duan, J.: Using structured events to predict stock price movement: an empirical investigation. In: EMNLP, pp. 1415–1425 (2014)

    Google Scholar 

  19. Schmidhuber, J., Hochreiter, S.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  20. Guo, C., Berkhahn, F.: Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737 (2016)

  21. Tetlock, P.C., Saar Tsechansky, M., Macskassy, S.: More than words: quantifying language to measure firms’ fundamentals. J. Finance 63(3), 1437–1467 (2008)

    Article  Google Scholar 

  22. Radinsky, K., Davidovich, S., Markovitch, S.: Learning causality for news events prediction. In: Proceedings of the 21st International Conference on World Wide Web, pp. 909–918. ACM (2012)

    Google Scholar 

  23. Luss, R., d’Aspremont, A.: Predicting abnormal returns from news using text classification. Quant. Finance 15(6), 999–1012 (2015)

    Article  MathSciNet  Google Scholar 

  24. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: Conference on Artificial Intelligence (No. EPFL-CONF-192344) (2011)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by grant from the Natural Science Foundation of China (No. 61632011, 61572102, 61702080, 61602079, 61562080), State Education Ministry and The Research Fund for the Doctoral Program of Higher Education (No. 20090041110002), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, B., Zhang, D., Zhang, S., Li, H., Lin, H. (2018). Stock Market Trend Prediction Using Recurrent Convolutional Neural Networks. In: Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2018. Lecture Notes in Computer Science(), vol 11109. Springer, Cham. https://doi.org/10.1007/978-3-319-99501-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99501-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99500-7

  • Online ISBN: 978-3-319-99501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics