Linear Combination of Distance Measures for Surrogate Models in Genetic Programming | SpringerLink
Skip to main content

Linear Combination of Distance Measures for Surrogate Models in Genetic Programming

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11102))

Included in the following conference series:

Abstract

Surrogate models are a well established approach to reduce the number of expensive function evaluations in continuous optimization. In the context of genetic programming, surrogate modeling still poses a challenge, due to the complex genotype-phenotype relationships. We investigate how different genotypic and phenotypic distance measures can be used to learn Kriging models as surrogates. We compare the measures and suggest to use their linear combination in a kernel.

We test the resulting model in an optimization framework, using symbolic regression problem instances as a benchmark. Our experiments show that the model provides valuable information. Firstly, the model enables an improved optimization performance compared to a model-free algorithm. Furthermore, the model provides information on the contribution of different distance measures. The data indicates that a phenotypic distance measure is important during the early stages of an optimization run when less data is available. In contrast, genotypic measures, such as the tree edit distance, contribute more during the later stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)

    Article  Google Scholar 

  2. Flasch, O.: A modular genetic programming system. Ph.D. thesis, TU Dortmund (2015)

    Google Scholar 

  3. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

    Article  Google Scholar 

  4. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55, 154–167 (2017)

    Article  Google Scholar 

  5. Parisotto, E., Mohamed, A., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic program synthesis (2016). arXiv e-prints 1611.01855

  6. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based optimisation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20364-0_13

    Chapter  Google Scholar 

  7. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient global optimization for combinatorial problems. In: Proceedings of the 2014 Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 871–878. ACM, New York (2014)

    Google Scholar 

  8. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  9. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  10. Kattan, A., Ong, Y.S.: Surrogate genetic programming: a semantic aware evolutionary search. Inf. Sci. 296, 345–359 (2015)

    Article  Google Scholar 

  11. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol. Comput. 23(3), 343–367 (2015)

    Article  Google Scholar 

  12. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Selection schemes in surrogate-assisted genetic programming for job shop scheduling. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 656–667. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_55

    Chapter  Google Scholar 

  13. Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted genetic programming with simplified models for automated design of dispatching rules. IEEE Trans. Cybern. 47(9), 1–15 (2016)

    Google Scholar 

  14. Moraglio, A., Kattan, A.: Geometric surrogate model based optimisation for genetic programming: Initial experiments. Technical report, University of Birmingham (2011)

    Google Scholar 

  15. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling. Wiley, Hoboken (2008)

    Book  Google Scholar 

  16. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Towards Global Optimization 2, North-Holland, pp. 117–129 (1978)

    Google Scholar 

  17. Pawlik, M., Augsten, N.: Tree edit distance: robust and memory-efficient. Inf. Syst. 56, 157–173 (2016)

    Article  Google Scholar 

  18. Pawlik, M., Augsten, N.: APTED release 0.1.1. GitHub (2016). https://github.com/DatabaseGroup/apted. Accessed 01 June 2017

  19. Moraglio, A., Poli, R.: Geometric landscape of homologous crossover for syntactic trees. In: 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK. IEEE (2005)

    Google Scholar 

  20. Gablonsky, J., Kelley, C.: A locally-biased form of the direct algorithm. J. Global Optim. 21(1), 27–37 (2001)

    Article  MathSciNet  Google Scholar 

  21. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  22. Flasch, O., Mersmann, O., Bartz-Beielstein, T., Stork, J., Zaefferer, M.: RGP: R genetic programming framework. R package version 0.4-1 (2014)

    Google Scholar 

  23. Zaefferer, M.: Combinatorial efficient global optimization in R - CEGO v2.2.0 (2017). https://cran.r-project.org/package=CEGO Accessed 10 Jan 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zaefferer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaefferer, M., Stork, J., Flasch, O., Bartz-Beielstein, T. (2018). Linear Combination of Distance Measures for Surrogate Models in Genetic Programming. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11102. Springer, Cham. https://doi.org/10.1007/978-3-319-99259-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99259-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99258-7

  • Online ISBN: 978-3-319-99259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics