Abstract
We present an algorithm for non-dominated sorting that is suitable for large-scale multiobjective optimisation. This algorithm is a hybrid of two previously known algorithms: the divide-and-conquer algorithm initially proposed by Jensen, and the non-dominated tree algorithm proposed by Gustavsson and Syberfeldt.
While possessing the good worst-case asymptotic behaviour of the divide-and-conquer algorithm, the proposed algorithm is also very efficient in practice. In our experimental study it is shown to outperform both of its parents on the majority of problem instances, both sampled uniformly from a hypercube and having a single front, with as large as \(10^6\) points and up to 15 objectives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brockhoff, D., Wagner, T.: GECCO 2016 tutorial on evolutionary multiobjective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference Companion, pp. 201–227 (2016)
Buzdalov, M., Shalyto, A.: A provably asymptotically fast version of the generalized jensen algorithm for non-dominated sorting. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 528–537. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_52
Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjective optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_9
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 283–290. Morgan Kaufmann Publishers (2001)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Fang, H., Wang, Q., Tu, Y.C., Horstemeyer, M.F.: An efficient non-dominated sorting method for evolutionary algorithms. Evol. Comput. 16(3), 355–384 (2008)
Fonseca, C.M., Fleming, P.J.: Nonlinear system identification with multiobjective genetic algorithm. In: Proceedings of the World Congress of the International Federation of Automatic Control, pp. 187–192 (1996)
Fortin, F.A., Grenier, S., Parizeau, M.: Generalizing the improved run-time complexity algorithm for non-dominated sorting. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 615–622. ACM (2013)
Gustavsson, P., Syberfeldt, A.: A new algorithm using the non-dominated tree to improve non-dominated sorting. Evol. Comput. 26(1), 89–116 (2018)
Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)
Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)
Markina, M., Buzdalov, M.: Hybridizing non-dominated sorting algorithms: divide-and-conquer meets best order sort. In: Proceedings of Genetic and Evolutionary Computation Conference Companion, pp. 153–154 (2017)
McClymont, K., Keedwell, E.: Deductive sort and climbing sort: new methods for non-dominated sorting. Evol. Comput. 20(1), 1–26 (2012)
Nekrich, Y.: A fast algorithm for three-dimensional layers of maxima problem. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 607–618. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22300-6_51
Roy, P.C., Islam, M.M., Deb, K.: Best Order Sort: a new algorithm to non-dominated sorting for evolutionary multi-objective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference Companion, pp. 1113–1120 (2016)
Schlünz, E.B.: Multiobjective in-core fuel management optimisation for nuclear research reactors. Ph.D. thesis, Stellenbosch University, December 2016
Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)
Stevens, J., Smith, K., Rempe, K., Downar, T.: Optimization of pressurized water reactor shuffling by simulated annealing with heuristics. Nucl. Sci. Eng. 121(1), 67–88 (1995)
Wang, H., Yao, X.: Corner sort for pareto-based many-objective optimization. IEEE Trans. Cybern. 44(1), 92–102 (2014)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001 Conference, pp. 95–100 (2001)
Acknowledgment
We would like to acknowledge the support of this research by the Russian Scientific Foundation, agreement No. 17-71-20178.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Markina, M., Buzdalov, M. (2018). Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm for Non-dominated Sorting. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-99253-2_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99252-5
Online ISBN: 978-3-319-99253-2
eBook Packages: Computer ScienceComputer Science (R0)