Extending the Speed-Constrained Multi-objective PSO (SMPSO) with Reference Point Based Preference Articulation | SpringerLink
Skip to main content

Extending the Speed-Constrained Multi-objective PSO (SMPSO) with Reference Point Based Preference Articulation

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Abstract

The Speed-constrained Multi-objective PSO (SMPSO) is an approach featuring an external bounded archive to store non-dominated solutions found during the search and out of which leaders that guide the particles are chosen. Here, we introduce SMPSO/RP, an extension of SMPSO based on the idea of reference point archives. These are external archives with an associated reference point so that only solutions that are dominated by the reference point or that dominate it are considered for their possible addition. SMPSO/RP can manage several reference point archives, so it can effectively be used to focus the search on one or more regions of interest. Furthermore, the algorithm allows interactively changing the reference points during its execution. Additionally, the particles of the swarm can be evaluated in parallel. We compare SMPSO/RP with respect to three other reference point based algorithms. Our results indicate that our proposed approach outperforms the other techniques with respect to which it was compared when solving a variety of problems by selecting both achievable and unachievable reference points. A real-world application related to civil engineering is also included to show up the real applicability of SMPSO/RP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/jMetal/jMetal.

References

  1. Coello Coello, C., Lamont, G., van Veldhuizen, D.: Multi-Objective Optimization Using Evolutionary Algorithms, 2nd edn. Wiley, Hoboken (2007)

    MATH  Google Scholar 

  2. Coello Coello, C.: Handling preferences in evolutionary multiobjective optimization: a survey. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, vol. 1, pp. 30–37 (2000)

    Google Scholar 

  3. Nebro, A., Durillo, J., García-Nieto, J., Coello Coello, C., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, MCDM 2009, pp. 66–73. IEEE Press (2009)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)

    Article  Google Scholar 

  6. Ruiz, A., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 62(1), 101–129 (2015)

    Article  MathSciNet  Google Scholar 

  7. Branke, J.: MCDA and multiobjective evolutionary algorithms. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis. ISOR, vol. 233, pp. 977–1008. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_23

    Chapter  Google Scholar 

  8. Li, L., Wang, Y., Trautmann, H., Jing, N., Emmerich, M.: Multiobjective evolutionary algorithms based on target region preferences. Swarm Evol. Comput. 40, 196–215 (2018)

    Article  Google Scholar 

  9. Wierzbicki, A.P.: Reference point approaches. In: Gal, T., Stewart, T.J., Hanne, T. (eds.) Multicriteria Decision Making. ISOR, vol. 21, pp. 237–275. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-5025-9_9

    Chapter  Google Scholar 

  10. Molina, J., Santana, L., Hernández-Díaz, A., Coello Coello, C., Caballero, R.: g-dominance: Reference point based dominance for multiobjective metaheuristics. Eur. J. Oper. Res. 197(2), 685–692 (2009)

    Article  Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  12. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_35

    Chapter  MATH  Google Scholar 

  13. Durillo, J., Nebro, A., Coello Coello, C., Garcia-Nieto, J., Luna, F., Alba, E.: A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans. Evol. Comput. 14(4), 618–635 (2010)

    Article  Google Scholar 

  14. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  15. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective optimization framework. In: Proceedings of the Companion of the Conference on Genetic and Evolutionary Computation (GECCO), pp. 1093–1100 (2015)

    Google Scholar 

  16. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  Google Scholar 

  17. Deb, K., Sundar, J., Ubay, B., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithm. Int. J. Comput. Intell. Res. 2(6), 273–286 (2006)

    MathSciNet  Google Scholar 

  18. Allmendinger, R., Li, X., Branke, J.: Reference point-based particle swarm optimization using a steady-state approach. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 200–209. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89694-4_21

    Chapter  Google Scholar 

  19. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  20. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. AI&KP, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  21. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20

    Chapter  MATH  Google Scholar 

  22. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  23. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  24. Zavala, G., Nebro, A.J., Luna, F., Coello Coello, C.: Structural design using multi-objective metaheuristics. Comparative study and application to a real-world problem. Struct. Multidiscip. Optim. 53(3), 545–566 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work has been partially funded by Grants TIN2017-86049-R (Spanish Ministry of Education and Science) and P12-TIC-1519 (Plan Andaluz de Investigación, Desarrollo e Innovación). Cristóbal Barba-González is supported by Grant BES-2015-072209 (Spanish Ministry of Economy and Competitiveness). José García-Nieto is the recipient of a Post-Doctoral fellowship of “Captación de Talento para la Investigación” Plan Propio at Universidad de Málaga. Javier Del Ser thanks the Basque Government for its funding support through the EMAITEK program. Carlos A. Coello Coello is supported by CONACyT project no. 221551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Nebro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nebro, A.J. et al. (2018). Extending the Speed-Constrained Multi-objective PSO (SMPSO) with Reference Point Based Preference Articulation. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics