Abstract
The Speed-constrained Multi-objective PSO (SMPSO) is an approach featuring an external bounded archive to store non-dominated solutions found during the search and out of which leaders that guide the particles are chosen. Here, we introduce SMPSO/RP, an extension of SMPSO based on the idea of reference point archives. These are external archives with an associated reference point so that only solutions that are dominated by the reference point or that dominate it are considered for their possible addition. SMPSO/RP can manage several reference point archives, so it can effectively be used to focus the search on one or more regions of interest. Furthermore, the algorithm allows interactively changing the reference points during its execution. Additionally, the particles of the swarm can be evaluated in parallel. We compare SMPSO/RP with respect to three other reference point based algorithms. Our results indicate that our proposed approach outperforms the other techniques with respect to which it was compared when solving a variety of problems by selecting both achievable and unachievable reference points. A real-world application related to civil engineering is also included to show up the real applicability of SMPSO/RP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Coello Coello, C., Lamont, G., van Veldhuizen, D.: Multi-Objective Optimization Using Evolutionary Algorithms, 2nd edn. Wiley, Hoboken (2007)
Coello Coello, C.: Handling preferences in evolutionary multiobjective optimization: a survey. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, vol. 1, pp. 30–37 (2000)
Nebro, A., Durillo, J., García-Nieto, J., Coello Coello, C., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, MCDM 2009, pp. 66–73. IEEE Press (2009)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)
Ruiz, A., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Glob. Optim. 62(1), 101–129 (2015)
Branke, J.: MCDA and multiobjective evolutionary algorithms. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Criteria Decision Analysis. ISOR, vol. 233, pp. 977–1008. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4_23
Li, L., Wang, Y., Trautmann, H., Jing, N., Emmerich, M.: Multiobjective evolutionary algorithms based on target region preferences. Swarm Evol. Comput. 40, 196–215 (2018)
Wierzbicki, A.P.: Reference point approaches. In: Gal, T., Stewart, T.J., Hanne, T. (eds.) Multicriteria Decision Making. ISOR, vol. 21, pp. 237–275. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-5025-9_9
Molina, J., Santana, L., Hernández-Díaz, A., Coello Coello, C., Caballero, R.: g-dominance: Reference point based dominance for multiobjective metaheuristics. Eur. J. Oper. Res. 197(2), 685–692 (2009)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_35
Durillo, J., Nebro, A., Coello Coello, C., Garcia-Nieto, J., Luna, F., Alba, E.: A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans. Evol. Comput. 14(4), 618–635 (2010)
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective optimization framework. In: Proceedings of the Companion of the Conference on Genetic and Evolutionary Computation (GECCO), pp. 1093–1100 (2015)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)
Deb, K., Sundar, J., Ubay, B., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithm. Int. J. Comput. Intell. Res. 2(6), 273–286 (2006)
Allmendinger, R., Li, X., Branke, J.: Reference point-based particle swarm optimization using a steady-state approach. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 200–209. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89694-4_21
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. AI&KP, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6
Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. Trans. Evol. Comput. 3(4), 257–271 (1999)
Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)
Zavala, G., Nebro, A.J., Luna, F., Coello Coello, C.: Structural design using multi-objective metaheuristics. Comparative study and application to a real-world problem. Struct. Multidiscip. Optim. 53(3), 545–566 (2016)
Acknowledgement
This work has been partially funded by Grants TIN2017-86049-R (Spanish Ministry of Education and Science) and P12-TIC-1519 (Plan Andaluz de Investigación, Desarrollo e Innovación). Cristóbal Barba-González is supported by Grant BES-2015-072209 (Spanish Ministry of Economy and Competitiveness). José García-Nieto is the recipient of a Post-Doctoral fellowship of “Captación de Talento para la Investigación” Plan Propio at Universidad de Málaga. Javier Del Ser thanks the Basque Government for its funding support through the EMAITEK program. Carlos A. Coello Coello is supported by CONACyT project no. 221551.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Nebro, A.J. et al. (2018). Extending the Speed-Constrained Multi-objective PSO (SMPSO) with Reference Point Based Preference Articulation. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-99253-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99252-5
Online ISBN: 978-3-319-99253-2
eBook Packages: Computer ScienceComputer Science (R0)