GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution | SpringerLink
Skip to main content

GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

Abstract

Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a recent Evolutionary Algorithm (EA) in which the interactions among parts of the solution (i.e., the linkage) are learned and exploited in a novel variation operator. We present GOMGE, the extension of GOMEA to Grammatical Evolution (GE), a popular EA based on an indirect representation which may be applied to any problem whose solutions can be described using a context-free grammar (CFG). GE is a general approach that does not require the user to tune the internals of the EA to fit the problem at hand: there is hence the opportunity for benefiting from the potential of GOMEA to automatically learn and exploit the linkage. We apply the proposed approach to three variants of GE differing in the representation (original GE, SGE, and WHGE) and incorporate in GOMGE two specific improvements aimed at coping with the high degeneracy of those representations. We experimentally assess GOMGE and show that, when coupled with WHGE and SGE, it is clearly beneficial to both effectiveness and efficiency, whereas it delivers mixed results with the original GE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ericmedvet/evolved-ge.

References

  1. Thierens, D., Bosman, P.A.: Optimal mixing evolutionary algorithms. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 617–624. ACM, New York (2011)

    Google Scholar 

  2. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  3. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Syntactical similarity learning by means of grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 260–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_24

    Chapter  Google Scholar 

  4. Medvet, E., Bartoli, A., Talamini, J.: Road traffic rules synthesis using grammatical evolution. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10200, pp. 173–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55792-2_12

    Chapter  Google Scholar 

  5. Castejón, F., Carmona, E.J.: Automatic design of analog electronic circuits using grammatical evolution. Appl. Soft Comput. 62, 1003–1018 (2018)

    Article  Google Scholar 

  6. Miranda, P.B., Prudêncio, R.B.: Generation of particle swarm optimization algorithms: an experimental study using grammar-guided genetic programming. Appl. Soft Comput. 60, 281–296 (2017)

    Article  Google Scholar 

  7. Medvet, E., Bartoli, A., Talamini, J.: Road traffic rules synthesis using grammatical evolution. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10200, pp. 173–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55792-2_12

    Chapter  Google Scholar 

  8. Thorhauer, A.: On the non-uniform redundancy in grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 292–302. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_27

    Chapter  Google Scholar 

  9. Thorhauer, A., Rothlauf, F.: On the locality of standard search operators in grammatical evolution. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 465–475. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_46

    Chapter  Google Scholar 

  10. Medvet, E., Bartoli, A.: On the automatic design of a representation for grammar-based genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 101–117. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_7

    Chapter  Google Scholar 

  11. Whigham, P.A., Dick, G., Maclaurin, J.: On the mapping of genotype to phenotype in evolutionary algorithms. Genet. Program. Evol. Mach. 18, 1–9 (2017)

    Article  Google Scholar 

  12. Spector, L.: Introduction to the peer commentary special section on “on the mapping of genotype to phenotype in evolutionary algorithms” by peter a. whigham, grant dick, and james maclaurin. Genet. Program. Evol. Mach. 18(3), 351–352 (2017)

    Article  Google Scholar 

  13. Lourenço, N., Pereira, F.B., Costa, E.: SGE: a structured representation for grammatical evolution. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 136–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6_11

    Chapter  Google Scholar 

  14. Medvet, E.: Hierarchical grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 249–250. ACM, New York (2017)

    Google Scholar 

  15. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1041–1048. ACM (2017)

    Google Scholar 

  16. Bouter, A., Alderliesten, T., Witteveen, C., Bosman, P.A.: Exploiting linkage information in real-valued optimization with the real-valued gene-pool optimal mixing evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 705–712. ACM (2017)

    Google Scholar 

  17. Luong, N.H., La Poutré, H., Bosman, P.A.: Multi-objective gene-pool optimal mixing evolutionary algorithms. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 357–364. ACM (2014)

    Google Scholar 

  18. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: \(\pi \)grammatical evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 617–629. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-2_70

    Chapter  Google Scholar 

  19. O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: the evolution of grammar and genetic code. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 138–149. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24650-3_13

    Chapter  Google Scholar 

  20. Wong, P.-K., Wong, M.-L., Leung, K.-S.: Hierarchical knowledge in self-improving grammar-based genetic programming. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 270–280. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_25

    Chapter  Google Scholar 

  21. He, P., Johnson, C.G., Wang, H.: Modeling grammatical evolution by automaton. Sci. China Inf. Sci. 54(12), 2544–2553 (2011)

    Article  MathSciNet  Google Scholar 

  22. He, P., Deng, Z., Gao, C., Chang, L., Hu, A.: Analyzing grammatical evolution and \(\pi \)Grammatical evolution with grammar model. In: Balas, V.E., Jain, L.C., Zhao, X. (eds.) Information Technology and Intelligent Transportation Systems. AISC, vol. 455, pp. 483–489. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-38771-0_47

    Chapter  Google Scholar 

  23. Shan, Y., McKay, R.I., Baxter, R., Abbass, H., Essam, D., Nguyen, H.: Grammar model-based program evolution. In: Congress on Evolutionary Computation, CEC2004, Volume 1, pp. 478–485. IEEE (2004)

    Google Scholar 

  24. Shan, Y., McKay, R., Essam, D., Abbass, H.: A survey of probabilistic model building genetic programming. In: Pelikan, M., Sastry, K., CantÚPaz, E. (eds.) Scalable Optimization via Probabilistic Modeling, pp. 121–160. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-34954-9_6

    Chapter  MATH  Google Scholar 

  25. Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 977–984. ACM (2017)

    Google Scholar 

  26. Medvet, E., Bartoli, A., Squillero, G.: An effective diversity promotion mechanism in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 247–248. ACM (2017)

    Google Scholar 

  27. Thierens, D., Bosman, P.A.N.: Hierarchical problem solving with the linkage tree genetic algorithm. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 877–884. ACM (2013)

    Google Scholar 

  28. Gronau, I., Moran, S.: Optimal implementations of UPGMA and other common clustering algorithms. Inf. Process. Lett. 104(6), 205–210 (2007)

    Article  MathSciNet  Google Scholar 

  29. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet. Program. Evol. Mach. 12(2), 91–119 (2011)

    Article  Google Scholar 

  30. Vanneschi, L., Castelli, M., Manzoni, L.: The k landscapes: a tunably difficult benchmark for genetic programming. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1467–1474. ACM (2011)

    Google Scholar 

  31. White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better gp benchmarks: community survey results and proposals. Genet. Program. Evol. Mach. 14(1), 3–29 (2013)

    Article  Google Scholar 

  32. Squillero, G., Tonda, A.: Divergence of character and premature convergence: a survey of methodologies for promoting diversity in evolutionary optimization. Inf. Sci. 329, 782–799 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Medvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Medvet, E., Bartoli, A., De Lorenzo, A., Tarlao, F. (2018). GOMGE: Gene-Pool Optimal Mixing on Grammatical Evolution. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics