Abstract
Querying temporal relational databases is a challenge for non-expert database users, since it requires users to understand the semantics of the database and apply temporal joins as well as temporal conditions correctly in SQL statements. Traditional keyword search approaches are not directly applicable to temporal relational databases since they treat time-related keywords as tuple values and do not consider the temporal joins between relations, which leads to missing answers, incorrect answers and missing query interpretations. In this work, we extend keyword queries to allow the temporal predicates, and design a schema graph approach based on the Object-Relationship-Attribute (ORA) semantics. This approach enables us to identify temporal attributes of objects/relationships and infer the target temporal data of temporal predicates, thus improving the completeness and correctness of temporal keyword search and capturing the various possible interpretations of temporal keyword queries. We also propose a two-level ranking scheme for the different interpretations of a temporal query, and develop a prototype system to support interactive keyword search.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26, 832–843 (1983)
de Oliveira, P., da Silva, A., de Moura, E.: Ranking candidate networks of relations to improve keyword search over relational databases. In: ICDE (2015)
Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in databases. In: ICDE (2007)
Gao, Q., Lee, M.L., Ling, T.W., Dobbie, G., Zeng, Z.: Analyzing temporal keyword queries for interactive search over temporal databases. Technical report TRA3/18. National University of Singapore (2018)
Gunadhi, H., Segev, A.: Query processing algorithms for temporal intersection joins. In: ICDE (1991)
Hristidis, V., Hwang, H., Papakonstantinou, Y.: Authority-based keyword search in databases. ACM TODS 33(1), 1:1–1:40 (2008)
Hristidis, V., Papakonstantinou, Y.: DISCOVER: keyword search in relational databases. In: VLDB (2002)
Hulgeri, A., Nakhe, C.: Keyword searching and browsing in databases using BANKS. In: ICDE (2002)
Jia, X., Hsu, W., Lee, M.L.: Target-oriented keyword search over temporal databases. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44403-1_1
Kacholia, V., Pandit, S., Chakrabarti, S.: Bidirectional expansion for keyword search on graph databases. In: VLDB (2005)
Kargar, M., An, A., Cercone, N., Godfrey, P., Szlichta, J., Yu, X.: Meaningful keyword search in relational databases with large and complex schema. In: ICDE (2015)
Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational databases. In: ACM SIGMOD (2006)
Liu, Z., Wang, C., Chen, Y.: Keyword search on temporal graphs. TKDE 29(8), 1667–1680 (2017)
Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: top-k keyword query in relational databases. In: ACM SIGMOD (2007)
Qin, L., Yu, J.X., Chang, L.: Keyword search in databases: the power of RDBMS. In: ACM SIGMOD (2009)
Yu, X., Shi, H.: CI-Rank: ranking keyword search results based on collective importance. In: ICDE (2012)
Zeng, Z., Bao, Z., Le, T.N., Lee, M.L., Ling. T.W.: ExpressQ: identifying keyword context and search target in relational keyword queries. In: ACM CIKM (2014)
Zeng, Z., Bao, Z., Lee, M.L., Ling, T.W.: A semantic approach to keyword search over relational databases. In: ER (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, Q., Lee, M.L., Ling, T.W., Dobbie, G., Zeng, Z. (2018). Analyzing Temporal Keyword Queries for Interactive Search over Temporal Databases. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2018. Lecture Notes in Computer Science(), vol 11029. Springer, Cham. https://doi.org/10.1007/978-3-319-98809-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-98809-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98808-5
Online ISBN: 978-3-319-98809-2
eBook Packages: Computer ScienceComputer Science (R0)