Abstract
In this article we try to survey most modern approaches to machine translation. To be more precise we apply state of the art statistical machine translation and neural machine translation using recurrent and convolutional neural networks on Polish data set. We survey current toolkits that can be used for such purpose like Tensorflow, ModernMT, OpenNMT, MarianMT and FairSeq by doing experiments on Polish to English and English to Polish translation task. We do proper hyperparameter search for Polish language as well as we facilitate in our experiments sub-word units like syllables and stemming. We also augment our data with POS tags and polish grammatical groups. The results are being compared to SMT as well as to Google Translate engine. In both cases we success in reaching higher BLEU score.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, vol. 1, pp. 48–54. Association for Computational Linguistics, May 2003
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122 (2017)
Luong, M.T., Manning, C.D.: Stanford neural machine translation systems for spoken language domains. In: Proceedings of the International Workshop on Spoken Language Translation, pp. 76–79 (2015)
Koehn, P., Knowles, R.: Six challenges for neural machine translation. arXiv preprint arXiv:1706.03872 (2017)
Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C.: Moses: open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 177–180. Association for Computational Linguistics, June 2007
Vasiļjevs, A., Skadiņš, R., Tiedemann, J.: LetsMT!: a cloud-based platform for do-it-yourself machine translation. In: Proceedings of the ACL 2012 System Demonstrations, pp. 43–48. Association for Computational Linguistics, July 2012
Stolcke, A.: SRILM-an extensible language modeling toolkit. In: Seventh International Conference on Spoken Language Processing (2002)
Junczys-Dowmunt, M., Szał, A.: Symgiza++: symmetrized word alignment models for statistical machine translation. In: Security and Intelligent Information Systems, pp. 379–390. Springer, Heidelberg (2012)
Heafield, K.: KenLM: faster and smaller language model queries. In: Proceedings of the Sixth Workshop on Statistical Machine Translation, pp. 187–197. Association for Computational Linguistics, July 2011
Jelinek, R.: Modern MT systems and the myth of human translation: Real World Status Quo. In: Proceedings of the International Conference Translating and the Computer, November 2004
PyTorch Core Team: Pytorch: Tensors and dynamic neural networks in python with strong GPU acceleration (2017)
Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: Opennmt: open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810 (2017)
Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909 (2015)
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Junczys-Dowmunt, M., Grundkiewicz, R., Grundkiewicz, T., Hoang, H., Heafield, K., Neckermann, T., Seide, F., Germann, U., Aji, A.F., Bogoychev, N., Martins, A.: Marian: Fast Neural Machine Translation in C++. arXiv preprint arXiv:1804.00344 (2018)
Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitschler, J., Junczys-Dowmunt, M., Läubli, S., Barone, A.V.M., Mokry, J., Nădejde, M.: Nematus: a toolkit for neural machine translation. arXiv preprint arXiv:1703.04357 (2017)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Wołk, A., Wołk, K., Marasek, K.: Analysis of complexity between spoken and written language for statistical machine translation in West-Slavic group. In: Multimedia and Network Information Systems, pp. 251–260. Springer, Cham (2017)
Wołk, K., Marasek, K.: Polish-English speech statistical machine translation systems for the IWSLT 2013. arXiv preprint arXiv:1509.09097 (2013)
Koehn, P.: Europarl: a parallel corpus for statistical machine translation. In: MT Summit, vol. 5, pp. 79–86, September 2005
Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics, July 2002
Groves, M., Mundt, K.: Friend or foe? Google Translate in language for academic purposes. Engl. Specif. Purp. 37, 112–121 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wolk, K., Marasek, K. (2019). Survey on Neural Machine Translation into Polish. In: Choroś, K., Kopel, M., Kukla, E., Siemiński, A. (eds) Multimedia and Network Information Systems. MISSI 2018. Advances in Intelligent Systems and Computing, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-319-98678-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-98678-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98677-7
Online ISBN: 978-3-319-98678-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)