Survey on Neural Machine Translation into Polish | SpringerLink
Skip to main content

Survey on Neural Machine Translation into Polish

  • Conference paper
  • First Online:
Multimedia and Network Information Systems (MISSI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 833))

Included in the following conference series:

Abstract

In this article we try to survey most modern approaches to machine translation. To be more precise we apply state of the art statistical machine translation and neural machine translation using recurrent and convolutional neural networks on Polish data set. We survey current toolkits that can be used for such purpose like Tensorflow, ModernMT, OpenNMT, MarianMT and FairSeq by doing experiments on Polish to English and English to Polish translation task. We do proper hyperparameter search for Polish language as well as we facilitate in our experiments sub-word units like syllables and stemming. We also augment our data with POS tags and polish grammatical groups. The results are being compared to SMT as well as to Google Translate engine. In both cases we success in reaching higher BLEU score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, vol. 1, pp. 48–54. Association for Computational Linguistics, May 2003

    Google Scholar 

  2. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  4. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122 (2017)

  5. Luong, M.T., Manning, C.D.: Stanford neural machine translation systems for spoken language domains. In: Proceedings of the International Workshop on Spoken Language Translation, pp. 76–79 (2015)

    Google Scholar 

  6. Koehn, P., Knowles, R.: Six challenges for neural machine translation. arXiv preprint arXiv:1706.03872 (2017)

  7. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C.: Moses: open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 177–180. Association for Computational Linguistics, June 2007

    Google Scholar 

  8. Vasiļjevs, A., Skadiņš, R., Tiedemann, J.: LetsMT!: a cloud-based platform for do-it-yourself machine translation. In: Proceedings of the ACL 2012 System Demonstrations, pp. 43–48. Association for Computational Linguistics, July 2012

    Google Scholar 

  9. Stolcke, A.: SRILM-an extensible language modeling toolkit. In: Seventh International Conference on Spoken Language Processing (2002)

    Google Scholar 

  10. Junczys-Dowmunt, M., Szał, A.: Symgiza++: symmetrized word alignment models for statistical machine translation. In: Security and Intelligent Information Systems, pp. 379–390. Springer, Heidelberg (2012)

    Google Scholar 

  11. Heafield, K.: KenLM: faster and smaller language model queries. In: Proceedings of the Sixth Workshop on Statistical Machine Translation, pp. 187–197. Association for Computational Linguistics, July 2011

    Google Scholar 

  12. Jelinek, R.: Modern MT systems and the myth of human translation: Real World Status Quo. In: Proceedings of the International Conference Translating and the Computer, November 2004

    Google Scholar 

  13. PyTorch Core Team: Pytorch: Tensors and dynamic neural networks in python with strong GPU acceleration (2017)

    Google Scholar 

  14. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: Opennmt: open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810 (2017)

  15. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909 (2015)

  16. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  17. Junczys-Dowmunt, M., Grundkiewicz, R., Grundkiewicz, T., Hoang, H., Heafield, K., Neckermann, T., Seide, F., Germann, U., Aji, A.F., Bogoychev, N., Martins, A.: Marian: Fast Neural Machine Translation in C++. arXiv preprint arXiv:1804.00344 (2018)

  18. Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitschler, J., Junczys-Dowmunt, M., Läubli, S., Barone, A.V.M., Mokry, J., Nădejde, M.: Nematus: a toolkit for neural machine translation. arXiv preprint arXiv:1703.04357 (2017)

  19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Wołk, A., Wołk, K., Marasek, K.: Analysis of complexity between spoken and written language for statistical machine translation in West-Slavic group. In: Multimedia and Network Information Systems, pp. 251–260. Springer, Cham (2017)

    Google Scholar 

  21. Wołk, K., Marasek, K.: Polish-English speech statistical machine translation systems for the IWSLT 2013. arXiv preprint arXiv:1509.09097 (2013)

  22. Koehn, P.: Europarl: a parallel corpus for statistical machine translation. In: MT Summit, vol. 5, pp. 79–86, September 2005

    Google Scholar 

  23. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  25. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics, July 2002

    Google Scholar 

  26. Groves, M., Mundt, K.: Friend or foe? Google Translate in language for academic purposes. Engl. Specif. Purp. 37, 112–121 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Wolk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wolk, K., Marasek, K. (2019). Survey on Neural Machine Translation into Polish. In: Choroś, K., Kopel, M., Kukla, E., Siemiński, A. (eds) Multimedia and Network Information Systems. MISSI 2018. Advances in Intelligent Systems and Computing, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-319-98678-4_27

Download citation

Publish with us

Policies and ethics