Abstract
Collaborative filtering has been considered the most used approach for recommender systems in both practice and research. Unfortunately, traditional collaborative filtering suffers from the so-called cold-start problem, which is the challenge to recommend items for an unknown user. In this paper, we introduce a generic framework for social collective recommendations targeting to support and complement traditional recommender systems to achieve better results. Our framework is composed of three modules, namely, a User Clustering module, a Representative module, and an Adaption module. The User Clustering module aims to find groups of users, the Representative module is responsible for determining a representative of each group, and the Adaption module handles new users and assigns them appropriately. By the composition of the framework, the cold-start problem is alleviated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anjumol, M., Ancy, K.S.: A survey on semantic based social recommendation. Int. Res. J. Eng. Technol. (IRJET) 3(6), 415–420 (2016)
Beel, J., Gipp, B., Langer, S., Breitinger, C.: Research-paper recommender systems: a literature survey. Int. J. Digit. Libr. 17(4), 305–338 (2016)
Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisles, A., Shani, G., Naamani, L.: Recommender system from personal social networks. In: Wegrzyn-Wolska, K.M., Szczepaniak, P.S. (eds.) Advances in Intelligent Web Mastering. AINSC, vol. 43, pp. 47–55. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72575-6_8
Bernardes, D., Diaby, M., Fournier, R.: A social formalism and survey for recommender systems. SIGKDD Explor. 16(2), 20–36 (2014)
Betru, B.T., Onana, Ch.A, Batchakui, B.: Deep learning methods on recommender system: a survey of state-of-the-art. Int. J. Comput. Appl. 162(10), 17–22 (2017)
Gorripati, S.K., Vatsavayi, V.K.: A community based content recommender systems. Int. J. Appl. Eng. Res. 12(22), 12989–12996 (2017). ISSN 0973–4562
Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2011)
Khusro, S., Ali, Z., Ullah, I.: Recommender systems: issues, challenges, and research opportunities. Information Science and Applications (ICISA) 2016. LNEE, vol. 376, pp. 1179–1189. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0557-2_112
Kywe, S.M., Lim, E.-P., Zhu, F.: A survey of recommender systems in Twitter. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 420–433. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35386-4_31
Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceedings of the 13th ACM International Conference on World Wide Web, pp. 393–402 (2004)
Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets (2014)
Ma, H., Yang, H., Lyu, M.R., King, I.: SoRec: social recommendation using probabilistic matrix factorization. In: International Conference on Information and Knowledge Management (CIKM) (2008)
Maleszka, M., Mianowska, B., Nguyen, N.T.: A method for collaborative recommendation using knowledge integration tools and hierarchical structure of user profiles. Knowl. Based Syst. 47, 1–13 (2013)
Mianowska, B., Nguyen, N.T.: A method for collaborative recommendation in document retrieval systems. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013. LNCS (LNAI), vol. 7803, pp. 168–177. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36543-0_18
Nagwekar, K.: A survey on recommendation systems based on online social communities. Int. J. Innov. Res. Comput. Commun. Eng. 4(12), 21857–21863 (2016)
Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3
Wang, X., Hoi, S.C.H., Ester, M., Bu, J., Chen, Ch.: Learning personalized preference of strong and weak ties for social recommendation. In: Proceedings of International World Wide Web Conference, pp. 1601–1610 (2017)
Yang, X., Guo, Y., Liu, Y., Steck, H.: A survey of collaborative filtering based social recommender systems. Comput. Commun. 41, 1–10 (2014)
Zhang, S., Yao, L., Sun, A.: Deep learning based recommender system: a survey and new perspectives. ACM J. Comput. Cult. Herit. 1(1), Article 35 (2017). https://dblp.uni-trier.de/rec/bibtex/journals/corr/ZhangYS17aa
Acknowledgment
This research was partially supported by the Wrocław University of Science and Technology under Polish-German cooperation program between the Ministry of Science and Higher Education and the German Academic Exchange Service, Project No. 0401/0115/18; by statute research grant of Ministry of Science and Higher Education, Project No. 0402/0071/17; by DAAD under grant PPP 57391625; and by the Brazilian National Council for Scientific and Technological Development (CNPq) - Science without Borders Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Homann, L., Maleszka, B., Martins, D.M.L., Vossen, G. (2018). A Generic Framework for Collaborative Filtering Based on Social Collective Recommendation. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11055. Springer, Cham. https://doi.org/10.1007/978-3-319-98443-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-98443-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98442-1
Online ISBN: 978-3-319-98443-8
eBook Packages: Computer ScienceComputer Science (R0)