Abstract
The Generalized Berge-Zhukovskii equilibrium extends the Berge-Zhukovskii equilibrium problem by introducing constraints over the set of strategy profiles. The new equilibrium is computed in a dynamic environment by using an evolutionary dynamic equilibrium tracking algorithm. Numerical experiments for the generalized Cournot duopoly illustrate the capability of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)
Cardell, J.B., Hitt, C.C., Hogan, W.W.: Market power and strategic interaction in electricity networks. Resour. Energy Econ. 19(1–2), 109–137 (1997)
Cournot, A.: Recherches sur les Principes Mathematique de la Theorie des Richesses. Hachette, Paris (1838)
Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)
Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. USA 38(10), 886–893 (1952)
Gaskó, N., Dumitrescu, D., Lung, R.I.: Evolutionary detection of Berge and Nash equilibria. In: Pelta, D., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol. 387, pp. 149–158. Springer, Heidelberg (2012)
Haurie, A., Krawczyk, J.: An introduction to dynamic games (2001)
Lasaulce, S., Tembine, H.: Game Theory and Learning for Wireless Networks: Fundamentals and Applications, 1st edn. Academic Press, Cambridge (2011)
Lung, R.I., Dumitrescu, D.: Computing Nash equilibria by means of evolutionary computation. Int. J. Comput. Commun. Control 3, 364–368 (2008)
Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
Van Long, N.: A Survey of Dynamic Games in Economics: Volume 1 of World Scientific Books. World Scientific Publishing Co. Pte. Ltd. (2010)
Roos, C.F.: A mathematical theory of competition. Am. J. Math. 47(3), 163–175 (1925)
Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)
Suciu, M., Gaskó, N., Lung, R.I., Dumitrescu, D.: Nash equilibria detection for discrete-time generalized cournot dynamic oligopolies. In: Terrazas, G., Otero, F., Masegosa, A. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol. 512, pp. 343–354. Springer, Heidelberg (2014)
Suciu, M., Lung, R.I., Gaskó, N., Dumitrescu, D.: Differential evolution for discrete-time large dynamic games (2013)
Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 204–211 (2000)
Acknowledgments
This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-2560.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Gaskó, N., Suciu, M., Lung, R.I. (2019). Dynamic Generalized Berge-Zhukovskii Equilibrium. In: Matoušek, R. (eds) Recent Advances in Soft Computing . MENDEL 2017. Advances in Intelligent Systems and Computing, vol 837. Springer, Cham. https://doi.org/10.1007/978-3-319-97888-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-97888-8_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97887-1
Online ISBN: 978-3-319-97888-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)