Dynamic Generalized Berge-Zhukovskii Equilibrium | SpringerLink
Skip to main content

Dynamic Generalized Berge-Zhukovskii Equilibrium

  • Conference paper
  • First Online:
Recent Advances in Soft Computing (MENDEL 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 837))

Included in the following conference series:

  • 334 Accesses

Abstract

The Generalized Berge-Zhukovskii equilibrium extends the Berge-Zhukovskii equilibrium problem by introducing constraints over the set of strategy profiles. The new equilibrium is computed in a dynamic environment by using an evolutionary dynamic equilibrium tracking algorithm. Numerical experiments for the generalized Cournot duopoly illustrate the capability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MathSciNet  Google Scholar 

  2. Cardell, J.B., Hitt, C.C., Hogan, W.W.: Market power and strategic interaction in electricity networks. Resour. Energy Econ. 19(1–2), 109–137 (1997)

    Article  Google Scholar 

  3. Cournot, A.: Recherches sur les Principes Mathematique de la Theorie des Richesses. Hachette, Paris (1838)

    MATH  Google Scholar 

  4. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  Google Scholar 

  5. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. USA 38(10), 886–893 (1952)

    Article  MathSciNet  Google Scholar 

  6. Gaskó, N., Dumitrescu, D., Lung, R.I.: Evolutionary detection of Berge and Nash equilibria. In: Pelta, D., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol. 387, pp. 149–158. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Haurie, A., Krawczyk, J.: An introduction to dynamic games (2001)

    Google Scholar 

  8. Lasaulce, S., Tembine, H.: Game Theory and Learning for Wireless Networks: Fundamentals and Applications, 1st edn. Academic Press, Cambridge (2011)

    Google Scholar 

  9. Lung, R.I., Dumitrescu, D.: Computing Nash equilibria by means of evolutionary computation. Int. J. Comput. Commun. Control 3, 364–368 (2008)

    Google Scholar 

  10. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  11. Van Long, N.: A Survey of Dynamic Games in Economics: Volume 1 of World Scientific Books. World Scientific Publishing Co. Pte. Ltd. (2010)

    Google Scholar 

  12. Roos, C.F.: A mathematical theory of competition. Am. J. Math. 47(3), 163–175 (1925)

    Article  MathSciNet  Google Scholar 

  13. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  Google Scholar 

  14. Suciu, M., Gaskó, N., Lung, R.I., Dumitrescu, D.: Nash equilibria detection for discrete-time generalized cournot dynamic oligopolies. In: Terrazas, G., Otero, F., Masegosa, A. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol. 512, pp. 343–354. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Suciu, M., Lung, R.I., Gaskó, N., Dumitrescu, D.: Differential evolution for discrete-time large dynamic games (2013)

    Google Scholar 

  16. Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 204–211 (2000)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-2560.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noémi Gaskó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaskó, N., Suciu, M., Lung, R.I. (2019). Dynamic Generalized Berge-Zhukovskii Equilibrium. In: Matoušek, R. (eds) Recent Advances in Soft Computing . MENDEL 2017. Advances in Intelligent Systems and Computing, vol 837. Springer, Cham. https://doi.org/10.1007/978-3-319-97888-8_28

Download citation

Publish with us

Policies and ethics