Aquatic Swimming of a Multi-functional Pedundulatory Bio-Robotic Locomotor | SpringerLink
Skip to main content

Aquatic Swimming of a Multi-functional Pedundulatory Bio-Robotic Locomotor

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

This paper considers aquatic swimming of a pedundulatory bio-robotic system, inspired by the outstanding aquatic and terrestrial locomotion capabilities of the polychaete annelid marine worms. The robot employs lateral undulations of its elongated body, augmented by the oscillation of active lateral appendages (parapodia), to propel itself. The efficient propulsion and terrain adaptability of such robots on unstructured terrestrial substrates have been demonstrated in previous work. Here, we explore gait generation for underwater propulsion by direct (tail-to-head) lateral body waves, either alone (undulatory modes) or combined with appropriately coordinated parapodial motion (pedundulatory modes). A three-segment compliant-body robotic prototype is used, whose body was fabricated by molding polyurethane elastomers. This robot was tested in a laboratory water tank, to demonstrate the advantage gained from the exploitation of both tail-to-head body undulations and parapodia for underwater swimming. The forward speed may more than double and the propulsive force may increase ten-fold, compared to the case where only undulations are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A supplementary video with footage from these experiments can be downloaded from http://tinyurl.com/LM18-forth.

References

  1. Yang, G.Z., Bellingham, J., Dupont, P.E., Fischer, P., Floridi, L., Full, R., Jacobstein, N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B., Scassellati, B., Taddeo, M., Taylor, R., Veloso, M., Lin Wang, Z., Wood, R.: The grand challenges of science robotics. Sci. Robot. 3, eaar7650 (2018)

    Article  Google Scholar 

  2. Cho, K.-J., Wood, R.: Biomimetic robots. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 543–574. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_23

    Chapter  Google Scholar 

  3. Iida, F., Ijspeert, A.J.: Biologically inspired robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 2015–2034. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_75

    Chapter  Google Scholar 

  4. Liljebäck, P., Pettersen, K., Stavdahl, Ø., Gravdahl, J.: A review on modelling, implementation, and control of snake robots. Robot. Auton. Syst. 60, 29–40 (2012)

    Article  Google Scholar 

  5. Crespi, A., Karakasiliotis, K., Guignard, A., Ijspeert, A.J.: Salamandra robotica ii: an amphibious robot to study salamander-like swimming and walking gaits. IEEE T-RO 29(2), 308–320 (2013)

    Article  Google Scholar 

  6. Yamada, H., Takaoka, S., Hirose, S.: A snake-like robot for realworld inspection applications (the design and control of a practical active cord mechanism). Adv. Robot. 27, 47–60 (2013)

    Article  Google Scholar 

  7. Gray, J.: Annelids. In: Animal Locomotion, Weidenfeld & Nicolson, pp. 377–410 (1968)

    Google Scholar 

  8. Gray, J.: Studies in animal locomotion. JEB 13(2), 192–199 (1936)

    Google Scholar 

  9. Brusca, R., Brusca, G.: Invertebrates. Sinauer Associates, Sunderland (1990)

    Google Scholar 

  10. Clark, R.B., Tritton, D.J.: Swimming mechanisms in nereidiform polychaetes. J. Zool. 161, 257–271 (1970)

    Article  Google Scholar 

  11. Clark, R.B., Hermans, C.: Kinetics of swimming in some smooth-bodied polychaetes. J. Zool. 178, 145–159 (1976)

    Google Scholar 

  12. Hesselberg, T.: Biomimetics and the case of the remarkable ragworms. Naturwissenschaften 94(8), 613 (2007)

    Article  Google Scholar 

  13. Wootton, R.: Invertebrate paraxial locomotory appendages: design, deformation and control. JEB 202(23), 3333–3345 (1999)

    Google Scholar 

  14. Clark, R.B.: Undulatory swimming in polychaetes. In: Perspectives in Experimental Biology, pp. 437–446 (1976)

    Chapter  Google Scholar 

  15. Mettam, C.: Segmental musculature and parapodial movement of Nereis diversicolor and Nephthys hombergi (Annelida: Polychaeta). J. Zool. 153(2), 245–275 (1967). The Linnean Society of New South Wales

    Article  Google Scholar 

  16. Mettam, C.: Functional morphology of locomotion in Chloeia (Polychaeta; Amphinomidae). In: Huchings, P.A. (ed.) Proceedings First International Polychaete Conference, pp. 390–400. The Linnean Society of New South Wales (1984)

    Google Scholar 

  17. Lawry Jr., J.V.: Mechanisms of locomotion in the polychaete, Harmothoë. Comp. Biochem. Phys. 37(2), 167–179 (1970)

    Article  Google Scholar 

  18. Sfakiotakis, M., Tsakiris, D.P., Karakasiliotis, K.: Polychaete-like pedundulatory robotic locomotion. In: Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA 2007), pp. 269–274 (2007)

    Google Scholar 

  19. Sfakiotakis, M., Tsakiris, D.P.: Pedundulatory robotic locomotion: centipede and polychaete modes in unstructured substrates. In: Proceedings of the International Conference on Robotics and Biomimetics (ROBIO 2008), pp. 651–658 (2009)

    Google Scholar 

  20. La Spina, G., Sfakiotakis, M., Tsakiris, D.P., Menciassi, A., Dario, P.: Polychaete-like undulatory robotic locomotion in unstructured substrates. IEEE T-RO 6, 1200–1212 (2007)

    Article  Google Scholar 

  21. Sfakiotakis, M., Tsakiris, D.P.: SIMUUN: a simulation environment for undulatory locomotion. Int. J. Model. Simul. 26(4), 350–358 (2006). Taylor & Francis

    Article  Google Scholar 

  22. Sfakiotakis, M., Tsakiris, D.P.: A biomimetic centering behavior for undulatory robots. IJRR 26(11–12), 1267–1282 (2007)

    Google Scholar 

  23. Sfakiotakis, M., Tsakiris, D.P.: Undulatory and pedundulatory robotic locomotion via direct and retrograde body waves. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2009), pp. 3457–3463 (2009)

    Google Scholar 

  24. Sfakiotakis, M., Chatzidaki, A., Evdaimon, T., Kazakidi, A., Tsakiris, D.P.: Effects of compliance in pedundulatory locomotion over granular substrates. In: Proceedings of the 24th Mediterranean Conference on Control and Automation (MED), pp. 532–538, June 2016

    Google Scholar 

  25. Semenov, A.: Metallic snake-nereis pellagica (2008). https://www.flickr.com/photos/a_semenov/3099126862

  26. Vogel, S.: Modes and scaling in aquatic locomotion. Integr. Comp. Biol. 48(6), 702–712 (2008)

    Article  Google Scholar 

  27. Nachtigall, W.: Hydromechanics and biology. Biophys. Struct. Mech. 8(1), 1–22 (1981)

    Article  MathSciNet  Google Scholar 

  28. Porez, M., Boyer, F., Ijspeert, A.J.: Improved lighthill fish swimming model for bio-inspired robots: modeling, computational aspects and experimental comparisons. IJRR 33(10), 1322–1341 (2014)

    Google Scholar 

  29. Gazzola, M., Argentina, M., Mahadevan, L.: Gait and speed selection in slender inertial swimmers. PNAS 112(13), 3874–3879 (2015)

    Article  Google Scholar 

  30. Taylor, G.: Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 214(1117), 158–183 (1952)

    Article  Google Scholar 

  31. McIsaac, K.A., Ostrowski, J.P.: Motion planning for anguilliform locomotion. IEEE Trans. Robot. Autom. 19(4), 637–652 (2003)

    Article  Google Scholar 

  32. Ekeberg, Ö.: A combined neuronal and mechanical model of fish swimming. Biol. Cybern. 69(5–6), 363–374 (1993)

    Article  Google Scholar 

  33. Ijspeert, A.J.: A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol. Cybern. 85(5), 331–348 (2001)

    Article  MathSciNet  Google Scholar 

  34. Ge, L., Sotiropoulos, F.: A numerical method for solving the 3D unsteady incompressible navier-stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225, 1782–1809 (2007)

    Article  MathSciNet  Google Scholar 

  35. Kazakidi, A., Tsakiris, D.P., Ekaterinaris, J.A.: Propulsive efficiency in drag-based locomotion of a reduced-size swimmer with various types of appendages. Comput. Fluids 167, 241–248 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the project “Advanced Research Activities in Biomedical & Agroalimentary Technologies” (MIS 5002469) implemented under the “Action for the Strategic Development on the Research & Technological Sector”, funded by the Operational Programme “Competitiveness, Entrepreneurship & Innovation” (NSRF 2014–2020), co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris P. Tsakiris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsakiris, D.P., Evdaimon, T., Papadakis, E. (2018). Aquatic Swimming of a Multi-functional Pedundulatory Bio-Robotic Locomotor. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics