Cross-Domain Attribute Representation Based on Convolutional Neural Network | SpringerLink
Skip to main content

Cross-Domain Attribute Representation Based on Convolutional Neural Network

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

  • 2590 Accesses

Abstract

In the problem of domain transfer learning, we learn a model for the prediction in a target domain from the data of both some source domains and the target domain, where the target domain is in lack of labels while the source domain has sufficient labels. Besides the instances of the data, recently the attributes of data shared across domains are also explored and proven to be very helpful to leverage the information of different domains. In this paper, we propose a novel learning framework for domain-transfer learning based on both instances and attributes. We proposed to embed the attributes of different domains by a shared convolutional neural network (CNN), learn a domain-independent CNN model to represent the information shared by different domains by matching across domains, and a domain-specific CNN model to represent the information of each domain. The concatenation of the three CNN model outputs is used to predict the class label. An iterative algorithm based on gradient descent method is developed to learn the parameters of the model. The experiments over benchmark datasets show the advantage of the proposed model.

The study was supported by Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, China (Grant No. KJS1324).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, manin products, and rota–baxter operators. Int. Math. Res. Not. 2013(3), 485–524 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bai, C., Guo, L., Ni, X.: Generalizations of the classical Yang-Baxter equation and O-operators. J. Math. Phys. 52(6), 063515 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bickel, S.: ECML-PKDD discovery challenge 2006 overview. In: ECML-PKDD Discovery Challenge Workshop, pp. 1–9 (2006)

    Google Scholar 

  4. Chen, Y., Khandaker, M., Wang, Z.: Pinpointing vulnerabilities. In: Proceedings of the 12th ACM Asia Conference on Computer and Communications Security, pp. 334–345. ACM, Abu Dhabi (2017)

    Google Scholar 

  5. Chen, Y., Khandaker, M., Wang, Z.: Secure in-cache execution. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp. 381–402. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66332-6_17

    Chapter  Google Scholar 

  6. Chen, Y., Wang, Z., Whalley, D., Lu, L.: Remix: on-demand live randomization. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 50–61. ACM, New Orleans (2016)

    Google Scholar 

  7. Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., Wei, T.: Adaptive android kernel live patching. In: Proceedings of the 26th USENIX Security Symposium (USENIX Security 2017). USENIX Association, Vancouver, BC, August 2017

    Google Scholar 

  8. Cui, P., Liu, H., He, J., Altintas, O., Vuyyuru, R., Rajan, D., Camp, J.: Leveraging diverse propagation and context for multi-modal vehicular applications. In: 2013 IEEE 5th International Symposium on Wire-less Vehicular Communications (WiVeC), pp. 1–5. IEEE (2013)

    Google Scholar 

  9. Ding, M., Fan, G.: Articulated Gaussian kernel correlation for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 57–64 (2015)

    Google Scholar 

  10. Ding, M., Fan, G.: Generalized sum of gaussians for real-time human pose tracking from a single depth sensor. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 47–54. IEEE (2015)

    Google Scholar 

  11. Ding, M., Fan, G.: Articulated and generalized Gaussian kernel correlation for human pose estimation. IEEE Trans. Image Process. 25(2), 776–789 (2016)

    Article  MathSciNet  Google Scholar 

  12. Geng, Y., Liang, R.Z., Li, W., Wang, J., Liang, G., Xu, C., Wang, J.Y.: Learning convolutional neural network to maximize pos@ top performance measure. In: ESANN 2017 – Proceedings, pp. 589–594 (2016)

    Google Scholar 

  13. Geng, Y., et al.: A novel image tag completion method based on convolutional neural transformation. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 539–546. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_61

    Chapter  Google Scholar 

  14. Jin, Y., Wang, T., Zhang, H., Zhang, Y., Zhao, J., Tong, R.: Localized quasi(bi) harmonic field and its applications. J. Adv. Mech. Des. Syst. Manuf. 11(4), JAMDSM0047 (2017)

    Article  Google Scholar 

  15. Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: Deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)

    Google Scholar 

  16. Liu, H., He, J., Cui, P., Camp, J., Rajan, D.: Astra: application of sequential training to rate adaptation. In: 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2012, pp. 443–451. IEEE (2012)

    Google Scholar 

  17. Ni, X., Bai, C.: Prealternative algebras and prealternative bialgebras. Pac. J. Math. 248(2), 355–391 (2010)

    Article  MathSciNet  Google Scholar 

  18. Ni, X., Bai, C.: Pseudo-hessian lie algebras and l-dendriform bialgebras. J. Algebra 400, 273–289 (2014)

    Article  MathSciNet  Google Scholar 

  19. Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and latent attribute modelling for cross-class transfer learning. IEEE Trans. Pattern Anal. Mach. Intell. 40 (2017)

    Article  Google Scholar 

  20. Shao, H., Chen, S., Zhao, J.Y., Cui, W.C., Yu, T.S.: Face recognition based on subset selection via metric learning on manifold. Front. Inf. Technol. Electron. Eng. 16(12), 1046–1058 (2015)

    Article  Google Scholar 

  21. Su, C., Yang, F., Zhang, S., Tian, Q., Davis, L., Gao, W.: Multi-task learning with low rank attribute embedding for multi-camera person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1167–1181 (2017)

    Article  Google Scholar 

  22. Wang, X., Chen, Y., Wang, Z., Qi, Y., Zhou, Y.: SecPod: a framework for virtualization-based security systems. In: Proceedings of the 2015 USENIX Annual Technical Conference, pp. 347–360 (2015)

    Google Scholar 

  23. Yang, L., Zhang, J.: Automatic transfer learning for short text mining. Eurasip J. Wirel. Commun. Netw. 2017(1), 42 (2017)

    Article  Google Scholar 

  24. Yu, T., Yan, J., Zhao, J., Li, B.: Joint cuts and matching of partitions in one graph. arXiv preprint arXiv:1711.09584 (2017)

  25. Zhang, G., et al.: Learning convolutional ranking-score function by query preference regularization. In: Yin, H., Gao, Y., Chen, S., Wen, Y., Cai, G., Gu, T., Du, J., Tallón-Ballesteros, A.J., Zhang, M. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 1–8. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_1

    Chapter  Google Scholar 

  26. Zhang, L., Yang, J., Zhang, D.: Domain class consistency based transfer learning for image classification across domains. Inf. Sci. 418–419, 242–257 (2017)

    Article  Google Scholar 

  27. Zhou, L., Lin, Y., Feng, B., Zhao, J., Tang, J.: Phylogeny analysis from gene-order data with massive duplications. BMC Genom. 18(7), 13 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoyuan Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, G., Liang, G., Su, F., Qu, F., Wang, JY. (2018). Cross-Domain Attribute Representation Based on Convolutional Neural Network. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics