Abstract
In the problem of domain transfer learning, we learn a model for the prediction in a target domain from the data of both some source domains and the target domain, where the target domain is in lack of labels while the source domain has sufficient labels. Besides the instances of the data, recently the attributes of data shared across domains are also explored and proven to be very helpful to leverage the information of different domains. In this paper, we propose a novel learning framework for domain-transfer learning based on both instances and attributes. We proposed to embed the attributes of different domains by a shared convolutional neural network (CNN), learn a domain-independent CNN model to represent the information shared by different domains by matching across domains, and a domain-specific CNN model to represent the information of each domain. The concatenation of the three CNN model outputs is used to predict the class label. An iterative algorithm based on gradient descent method is developed to learn the parameters of the model. The experiments over benchmark datasets show the advantage of the proposed model.
The study was supported by Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, China (Grant No. KJS1324).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, manin products, and rota–baxter operators. Int. Math. Res. Not. 2013(3), 485–524 (2013)
Bai, C., Guo, L., Ni, X.: Generalizations of the classical Yang-Baxter equation and O-operators. J. Math. Phys. 52(6), 063515 (2011)
Bickel, S.: ECML-PKDD discovery challenge 2006 overview. In: ECML-PKDD Discovery Challenge Workshop, pp. 1–9 (2006)
Chen, Y., Khandaker, M., Wang, Z.: Pinpointing vulnerabilities. In: Proceedings of the 12th ACM Asia Conference on Computer and Communications Security, pp. 334–345. ACM, Abu Dhabi (2017)
Chen, Y., Khandaker, M., Wang, Z.: Secure in-cache execution. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp. 381–402. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66332-6_17
Chen, Y., Wang, Z., Whalley, D., Lu, L.: Remix: on-demand live randomization. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 50–61. ACM, New Orleans (2016)
Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., Wei, T.: Adaptive android kernel live patching. In: Proceedings of the 26th USENIX Security Symposium (USENIX Security 2017). USENIX Association, Vancouver, BC, August 2017
Cui, P., Liu, H., He, J., Altintas, O., Vuyyuru, R., Rajan, D., Camp, J.: Leveraging diverse propagation and context for multi-modal vehicular applications. In: 2013 IEEE 5th International Symposium on Wire-less Vehicular Communications (WiVeC), pp. 1–5. IEEE (2013)
Ding, M., Fan, G.: Articulated Gaussian kernel correlation for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 57–64 (2015)
Ding, M., Fan, G.: Generalized sum of gaussians for real-time human pose tracking from a single depth sensor. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 47–54. IEEE (2015)
Ding, M., Fan, G.: Articulated and generalized Gaussian kernel correlation for human pose estimation. IEEE Trans. Image Process. 25(2), 776–789 (2016)
Geng, Y., Liang, R.Z., Li, W., Wang, J., Liang, G., Xu, C., Wang, J.Y.: Learning convolutional neural network to maximize pos@ top performance measure. In: ESANN 2017 – Proceedings, pp. 589–594 (2016)
Geng, Y., et al.: A novel image tag completion method based on convolutional neural transformation. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 539–546. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_61
Jin, Y., Wang, T., Zhang, H., Zhang, Y., Zhao, J., Tong, R.: Localized quasi(bi) harmonic field and its applications. J. Adv. Mech. Des. Syst. Manuf. 11(4), JAMDSM0047 (2017)
Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: Deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)
Liu, H., He, J., Cui, P., Camp, J., Rajan, D.: Astra: application of sequential training to rate adaptation. In: 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2012, pp. 443–451. IEEE (2012)
Ni, X., Bai, C.: Prealternative algebras and prealternative bialgebras. Pac. J. Math. 248(2), 355–391 (2010)
Ni, X., Bai, C.: Pseudo-hessian lie algebras and l-dendriform bialgebras. J. Algebra 400, 273–289 (2014)
Peng, P., Tian, Y., Xiang, T., Wang, Y., Pontil, M., Huang, T.: Joint semantic and latent attribute modelling for cross-class transfer learning. IEEE Trans. Pattern Anal. Mach. Intell. 40 (2017)
Shao, H., Chen, S., Zhao, J.Y., Cui, W.C., Yu, T.S.: Face recognition based on subset selection via metric learning on manifold. Front. Inf. Technol. Electron. Eng. 16(12), 1046–1058 (2015)
Su, C., Yang, F., Zhang, S., Tian, Q., Davis, L., Gao, W.: Multi-task learning with low rank attribute embedding for multi-camera person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1167–1181 (2017)
Wang, X., Chen, Y., Wang, Z., Qi, Y., Zhou, Y.: SecPod: a framework for virtualization-based security systems. In: Proceedings of the 2015 USENIX Annual Technical Conference, pp. 347–360 (2015)
Yang, L., Zhang, J.: Automatic transfer learning for short text mining. Eurasip J. Wirel. Commun. Netw. 2017(1), 42 (2017)
Yu, T., Yan, J., Zhao, J., Li, B.: Joint cuts and matching of partitions in one graph. arXiv preprint arXiv:1711.09584 (2017)
Zhang, G., et al.: Learning convolutional ranking-score function by query preference regularization. In: Yin, H., Gao, Y., Chen, S., Wen, Y., Cai, G., Gu, T., Du, J., Tallón-Ballesteros, A.J., Zhang, M. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 1–8. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68935-7_1
Zhang, L., Yang, J., Zhang, D.: Domain class consistency based transfer learning for image classification across domains. Inf. Sci. 418–419, 242–257 (2017)
Zhou, L., Lin, Y., Feng, B., Zhao, J., Tang, J.: Phylogeny analysis from gene-order data with massive duplications. BMC Genom. 18(7), 13 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Zhang, G., Liang, G., Su, F., Qu, F., Wang, JY. (2018). Cross-Domain Attribute Representation Based on Convolutional Neural Network. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-95957-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95956-6
Online ISBN: 978-3-319-95957-3
eBook Packages: Computer ScienceComputer Science (R0)