A Two-Phase Variable Neighborhood Search for Flexible Job Shop Scheduling Problem with Energy Consumption Constraint | SpringerLink
Skip to main content

A Two-Phase Variable Neighborhood Search for Flexible Job Shop Scheduling Problem with Energy Consumption Constraint

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10954))

Included in the following conference series:

  • 2921 Accesses

Abstract

This paper investigates flexible job shop scheduling problem (FJSP) with energy consumption constraint, the goal of which is to minimize makespan and total tardiness under the constraint that total energy consumption doesn’t exceed a given threshold. Energy consumption constraint is not always met and a new method for this constraint is proposed. A two-phase variable neighborhood search (TVNS) is presented. In the first phase, the problem is converted into FJSP with makespan, total tardiness and total energy consumption and a VNS is applied for the new problem. In the second phase, another VNS is for the original problem by strategies for comparing solutions and updating the non-dominated set \( \Omega \) of the first phase. The current solution of TVNS is replaced with a member of \( \Omega \) every a prefixed number of iterations to improve solution quality. Extensive experiments are conducted and computational results validate the effectiveness and advantages of TVNS for the considered FJSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math. Comput. Simul. 60(3–5), 245–276 (2002)

    Article  MathSciNet  Google Scholar 

  2. Gao, J., Gen, M., Sun, L., Zhao, X.: A hybrid of genetic algorithm and bottleneck shifting for multi-objective flexible job shop scheduling problems. Comput. Ind. Eng. 53(1), 149–162 (2007)

    Article  Google Scholar 

  3. Yuan, Y., Xu, H.: Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans. Autom. Sci. Eng. 12(1), 336–353 (2015)

    Article  Google Scholar 

  4. Rohaninejad, M., Kheirkhah, A., Fattahi, P., Vahedi-Nouri, B.: A hybrid multi-objective genetic algorithm based on the ELECTRE method for a capacitated flexible job shop scheduling problem. Int. J. Adv. Manufact. Technol. 77(1), 51–66 (2015)

    Article  Google Scholar 

  5. Rohaninejad, M., Sahraeian, R., Nouri, B.V.: Multi-objective optimization of integrated lot-sizing and scheduling problem in flexible job shop. PAIRO Oper. Res. 50(3), 587–609 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Li, J., Huang, Y., Niu, X.: A branch population genetic algorithm for dual-resource constrained job shop scheduling problem. Comput. Ind. Eng. 102(1), 113–131 (2016)

    Article  Google Scholar 

  7. Ahmadi, E., Zandieh, M., Farrokh, M., Emami, S.M.: A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithm. Comput. Oper. Res. 73(1), 56–66 (2016)

    Article  MathSciNet  Google Scholar 

  8. Shen, X.N., Han, Y., Fu, J.Z.: Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems. Soft Comput. (2018, in press)

    Google Scholar 

  9. Moslehi, G., Mahnam, M.: A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search. Int. J. Prod. Econ. 129(1), 14–22 (2011)

    Article  Google Scholar 

  10. Singh, M.R., Singh, M., Mahapatra, S.S., Jagadev, N.: Particle swarm optimization algorithm embedded with maximum deviation theory for solving multi-objective flexible job shop scheduling problem. Int. J. Adv. Manuf. Technol. 85(9), 2353–2366 (2016)

    Article  Google Scholar 

  11. Gao, K.Z., Suganthan, P.N., Pan, Q.K., Chua, T.J., Cai, T.X., Chong, C.S.: Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling. Inf. Sci. 289(1), 76–90 (2014)

    Article  MathSciNet  Google Scholar 

  12. Li, J.Q., Pan, Q.K., Tasgetiren, M.F.: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance. Appl. Math. Model. 38(3), 1111–1132 (2014)

    Article  MathSciNet  Google Scholar 

  13. Jia, S., Hu, Z.H.: Path-relinking tabu search for the multi-objective flexible job shop scheduling problem. Comput. Oper. Res. 47(1), 11–26 (2014)

    Article  MathSciNet  Google Scholar 

  14. Bagheri, A., Zandieh, M.: Bi-criteria flexible job-shop scheduling with sequence-dependent setup times-variable neighborhood search approach. J. Manuf. Syst. 30(1), 8–15 (2011)

    Article  Google Scholar 

  15. Li, J.Q., Pan, Q.K., Xie, S.X.: An effective shuffled frog-leaping algorithm for multi-objective flexible job shop scheduling problems. Appl. Math. Comput. 218(18), 9353–9371 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Wang, L., Wang, S.Y., Liu, M.: A Pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem. Int. J. Prod. Res. 51(12), 3574–3592 (2013)

    Article  Google Scholar 

  17. Li, J.Q., Sang, H.Y., Han, Y.Y., Wang, C.G., Gao, K.Z.: Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. J. Cleaner Prod. 181, 584–598 (2018)

    Article  Google Scholar 

  18. He, Y., Li, Y.F., Wu, T., Sutherland, J.W.: An energy-responsive optimization method for machine tool selection and operation sequence in flexible machining job shops. J. Cleaner Prod. 87(1), 245–254 (2015)

    Article  Google Scholar 

  19. Yin, L.J., Li, X.Y., Gao, L., Lu, C., Zhang, Z.: A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem. Sustain. Comput. Inf. Syst. 13, 15–30 (2017)

    Google Scholar 

  20. Lei, D.M., Zheng, Y.L., Guo, X.P.: A shuffled frog leaping algorithm for flexible job shop scheduling with the consideration of energy consumption. Int. J. Prod. Res. 55(11), 3126–3140 (2017)

    Article  Google Scholar 

  21. Mokhtari, H., Hasani, A.: An energy-efficient multi-objective optimization for flexible job shop scheduling. Comput. Ind. Eng. 104, 339–352 (2017)

    Google Scholar 

  22. Lei, D.M., Li, M., Wang, L.: A two-phase meta-heuristic for multi-objective flexible job shop scheduling problem with total energy consumption threshold. IEEE Trans. Cybern. (2018, in press)

    Google Scholar 

  23. Lei, D.M., Yang, D.J.: Research on flexible job shop scheduling problem with total energy consumption constraint. ACTA Autom. Sinica (2018, in press). (in Chinese)

    Google Scholar 

  24. Lei, D.M.: Simplified multi-objective genetic algorithm for stochastic job shop scheduling. Appl. Soft Comput. 11(8), 4991–4996 (2011)

    Article  Google Scholar 

  25. Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper. Res. 70(2), 281–306 (1997)

    Article  MathSciNet  Google Scholar 

  26. Knowles, J.D., Corne, D.W.: On metrics for comparing non-dominated sets. In: Proceedings of 2002 Congress on Evolutionary Computation, Honolulu, 12–17 May, pp. 711–716 (2002)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science of Foundation of China (61573264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deming Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, C., Lei, D. (2018). A Two-Phase Variable Neighborhood Search for Flexible Job Shop Scheduling Problem with Energy Consumption Constraint. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95930-6_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95929-0

  • Online ISBN: 978-3-319-95930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics