Abstract
This study proposes a method to calibrate the semi-empirical CLAIR model, a simplified reflectance model used to estimate the Leaf Area Index (LAI) from optical data, using Landsat-8 Operational Land Imager Surface Reflectance (OLISR) data over wheat cultivation areas.
The procedure can be applied lacking both LAI field measurements and surface reflectance (SR) data by exploiting free of charge data, as the novel high-level Landsat8 OLISR and the Sentinel-2 LAI (S2 LAI) products. This last dataset was used as LAI reference at field size scale. Once calibrated, the model generates LAI information from OLISR data consistent with the S2 LAI. In this way it is possible merge the two products to obtain a finer temporal resolution LAI estimation during all the crop seasons.
The method was tested and statistically assessed on three different wheat test fields located in the Capitanata area (Apulia region, Italy).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, J.M., Black, T.A.: Defining leaf area index for non-flat leaves. Plant, Cell Environ. 15(4), 421–429 (1992)
Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space–time LAI variability in Northern Puglia (Italy) from SPOT VGT data. Environ. Monit. Assess. 187, 1–15 (2015)
Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A., Escadafal, R., Ezzahar, J., Hoedjes, J.C.B., Kharrou, M.H.: Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manag. 79(1), 1–27 (2006)
Vanino, S., Nino, P., De Michele, C., Bolognesi, S.F., Pulighe, G.: Earth observation for improving irrigation water management: a case-study from Apulia Region in Italy. Agric. Agric. Sci. Procedia 4, 99–107 (2015)
Trombetta, A., Iacobellis, V., Tarantino, E., Gentile, F.: Calibration of the AquaCrop model for winter wheat using MODIS LAI images. Agric. Water Manag. 164(2), 304–316 (2016)
Bréda, N.J.J.: Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot. 54(392), 2403–2417 (2003)
Martinez, B., Cassiraga, E., Camacho, F., Garcia-Haro, J.: Geostatistics for mapping leaf area index over a cropland landscape: efficiency sampling assessment. Remote Sens. 2(11), 2584–2606 (2010)
Richter, K., Vuolo, F., D’Urso, G., Dini, L.: Evaluation of different methods for the retrieval of LAI using high resolution airborne data. In: The International Society for Optical Engineering Proceedings of SPIE. Society of Photo-Optical Instrumentation Engineers (2007)
Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G., Camps-Valls, G., Moreno, J.: Experimental sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods–a comparison. ISPRS J. Photogram. Remote Sens. 108, 260–272 (2015)
Clevers, J.G.P.W.: Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ. 29(1), 25–37 (1989)
Clevers, J.G.P.W., Vonder, O.W., Jongschaap, R.E.E., Desprats, J.F., King, C., Prévot, L., Bruguier, N.: A semi-empirical approach for estimating plant parameters within the RESEDA-project. In: International Archives of Photogrammetry and Remote Sensing 33(B7/1; PART 7), pp. 272–279 (2000)
Vuolo, F., Dini, L., D’Urso, G.: Assessment of LAI retrieval accuracy by inverting a RT model and a simple empirical model with multiangular and hyperspectral CHRIS/PROBA data from SPARC. In: Proceedings 3rd CHRIS/Proba Workshop (2005)
Akdim, N., Alfieri, S.M., Habib, A., Choukri, A., Cheruiyot, E., Labbassi, K., Menenti, M.: Monitoring of irrigation schemes by remote sensing: phenology versus retrieval of biophysical variables. Remote Sens. 6(6), 5815 (2014)
Vanino, S., Pulighe, G., Nino, P., De Michele, C., Bolognesi, S.F., D’Urso, G.: Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment. Remote Sens. 7(11), 14708–14730 (2015)
Clevers, J., Vonder, O., Jongschaap, R., Desprats, J.F., King, C., Prévot, L., Bruguier, N.: Using SPOT data for calibrating a wheat growth model under mediterranean conditions. Agronomie 22(6), 687–694 (2002)
Clevers, J.G.P.W.: The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sens. Environ. 25(1), 53–69 (1988)
Baret, F., Jacquemoud, S., Hanocq, J.F.: The soil line concept in remote sensing. Remote Sens. Rev. 7(1), 65–82 (1993)
Vuolo, F., Neugebauer, N., Bolognesi, S.F., Atzberger, C., D’Urso, G.: Estimation of leaf area index using DEIMOS-1 data: application and transferability of a semi-empirical relationship between two agricultural areas. Remote Sens. 5(3), 1274–1291 (2013)
Clevers, J.G.P.W.: Application of the WDVI in estimating LAI at the generative stage of barley. ISPRS J. Photogram. Remote Sens. 46(1), 37–47 (1991)
Vermote, E., Justice, C., Claverie, M., Franch, B.: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016)
Roy, D.P., Wulder, M.A., Loveland, T.R., Woodcock, C.E., Allen, R.G., Anderson, M.C., Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R.: Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)
Drusch, M., et al.: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012)
Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., Gascon, F.: Sentinel-2 Sen2Cor: L2A processor for users. In: Proceedings Living Planet Symposium 2016, pp. 1–8. Spacebooks Online (2016)
Jacquemoud, S., et al.: PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens. Environ. 113, S56–S66 (2009)
Yoshioka, H., Miura, T., Demattê, J.A., Batchily, K., Huete, A.R.: Soil line influences on two-band vegetation indices and vegetation isolines: a numerical study. Remote Sens. 2(2), 545–561 (2010)
Aquilino M., Novelli A., Tarantino E., Gentile F., Iacobellis V.: Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. Remote Sensing for Agriculture Ecosystems and Hydrology (2014)
Peschechera, G., Novelli, A., Caradonna, G., Fratino, U.: Calibration of the CLAIR model by using Landsat 8 surface reflectance higher-level data and MODIS leaf area index products. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 16–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_2
Gao, F., Anderson, M.C., Kustas, W.P., Wang, Y.: Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference. J. Appl. Remote Sens. 6(1), 063554 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Peschechera, G., Fratino, U. (2018). Calibration of CLAIR Model by Means of Sentinel-2 LAI Data for Analysing Wheat Crops Through Landsat-8 Surface Reflectance Data. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10964. Springer, Cham. https://doi.org/10.1007/978-3-319-95174-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-95174-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95173-7
Online ISBN: 978-3-319-95174-4
eBook Packages: Computer ScienceComputer Science (R0)