A Linear-Space Data Structure for Range-LCP Queries in Poly-Logarithmic Time | SpringerLink
Skip to main content

A Linear-Space Data Structure for Range-LCP Queries in Poly-Logarithmic Time

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

Abstract

Let \(\mathsf {T}[1,n]\) be a text of length n and \(\mathsf {T}[i,n]\) be the suffix starting at position i. Also, for any two strings X and Y, let \(\mathsf {LCP}(X, Y)\) denote their longest common prefix. The range-LCP of \(\mathsf {T}\) w.r.t. a range \([\alpha ,\beta ]\), where \(1\le \alpha < \beta \le n\) is

Amir et al. [ISAAC 2011] introduced the indexing version of this problem, where the task is to build a data structure over \(\mathsf {T}\), so that \(\mathsf {rlcp}(\alpha ,\beta )\) for any query range \([\alpha ,\beta ]\) can be reported efficiently. They proposed an \(O(n\log ^{1+\epsilon } n)\) space structure with query time \(O(\log \log n)\), and a linear space (i.e., O(n) words) structure with query time \(O(\delta \log \log n)\), where \(\delta = \beta -\alpha +1\) is the length of the input range and \(\epsilon > 0\) is an arbitrarily small constant. Later, Patil et al. [SPIRE 2013] proposed another linear space structure with an improved query time of \(O(\sqrt{\delta }\log ^{\epsilon } \delta )\). This poses an interesting question, whether it is possible to answer \(\mathsf {rlcp}(\cdot ,\cdot )\) queries in poly-logarithmic time using a linear space data structure. In this paper, we settle this question by presenting an O(n) space data structure with query time \(O(\log ^{1+\epsilon } n)\) and construction time \(O(n\log n)\).

A part of this work was done at NII Shonan Meeting No. 126: Computation over Compressed Structured Data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All results throughout this paper assume the standard unit-cost word RAM model, in which any standard arithmetic or boolean bitwise operation on word-sized operands takes constant time. The space is measured in words of \(\log n\) bits unless specified otherwise.

  2. 2.

    See Theorem 9 in [16] on sorted dominance reporting in 3D.

  3. 3.

    Weighted level ancestor queries on suffix trees can be answered in O(1) time using a linear space data structure [10] (also see [7]).

References

  1. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.: Range LCP. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 683–692. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25591-5_70

    Chapter  Google Scholar 

  2. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.: Range LCP. J. Comput. Syst. Sci. 80(7), 1245–1253 (2014)

    Article  MathSciNet  Google Scholar 

  3. Amir, A., Lewenstein, M., Thankachan, S.V.: Range LCP queries revisited. In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 350–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5_33

    Chapter  Google Scholar 

  4. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM, revisited. In: Symposium on Computational Geometry, pp. 1–10 (2011)

    Google Scholar 

  5. Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988)

    Article  MathSciNet  Google Scholar 

  6. Cormode, G., Muthukrishnan, S.: Substring compression problems. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 321–330. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  7. Farach, M., Muthukrishnan, S.: Perfect hashing for strings: formalization and algorithms. In: Hirschberg, D., Myers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 130–140. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61258-0_11

    Chapter  Google Scholar 

  8. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

    Article  MathSciNet  Google Scholar 

  9. Gagie, T., Karhu, K., Navarro, G., Puglisi, S.J., Sirén, J.: Document listing on repetitive collections. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 107–119. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38905-4_12

    Chapter  Google Scholar 

  10. Gawrychowski, P., Lewenstein, M., Nicholson, P.K.: Weighted ancestors in suffix trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 455–466. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2_38

    Chapter  Google Scholar 

  11. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MathSciNet  Google Scholar 

  12. Keller, O., Kopelowitz, T., Feibish, S.L., Lewenstein, M.: Generalized substring compression. Theor. Comput. Sci. 525, 42–54 (2014)

    Article  MathSciNet  Google Scholar 

  13. Lewenstein, M.: Orthogonal range searching for text indexing. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures, Streams, and Algorithms. LNCS, vol. 8066, pp. 267–302. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40273-9_18

    Chapter  Google Scholar 

  14. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31155-0_24

    Chapter  Google Scholar 

  15. Patil, M., Shah, R., Thankachan, S.V.: Faster range LCP queries. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 263–270. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02432-5_29

    Chapter  Google Scholar 

  16. Patil, M., Thankachan, S.V., Shah, R., Nekrich, Y., Vitter, J.S.: Categorical range maxima queries. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2014, 22–27 June 2014, Snowbird, UT, USA, pp. 266–277 (2014)

    Google Scholar 

  17. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, 11–13 May 1981, Milwaukee, Wisconsin, USA, pp. 114–122 (1981)

    Google Scholar 

  18. Weiner, P.: Linear pattern matching algorithms. In: SWAT, pp. 1–11 (1973)

    Google Scholar 

  19. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space theta(n). Inf. Process. Lett. 17(2), 81–84 (1983)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the U.S. NSF under the grants CCF-1703489 and CCF-1527435, and the Taiwan Ministry of Science and Technology under the grant 105-2221-E-007-040-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharma V. Thankachan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abedin, P. et al. (2018). A Linear-Space Data Structure for Range-LCP Queries in Poly-Logarithmic Time. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics