Abstract
The automated theorem prover Leo-III for classical higher-order logic with Henkin semantics and choice is presented. Leo-III is based on extensional higher-order paramodulation and accepts every common TPTP dialect (FOF, TFF, THF), including their recent extensions to rank-1 polymorphism (TF1, TH1). In addition, the prover natively supports almost every normal higher-order modal logic. Leo-III cooperates with first-order reasoning tools using translations to many-sorted first-order logic and produces verifiable proof certificates. The prover is evaluated on heterogeneous benchmark sets.
The work was supported by the German National Research Foundation (DFG) under grant BE 2501/11-1. For an extended version of this paper see arXiv:1802.02732.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Leo-III is freely available (BSD license) at http://github.com/leoprover/Leo-III.
- 2.
- 3.
- 4.
Remark on CAX: In this special case of THM (theorem) the given axioms are inconsistent, so that anything follows, including the given conjecture. Unlike most other provers, Leo-III checks for this special situation.
- 5.
This information is extracted from the TPTP problem rating information that is attached to each problem. The unsolved problems are NLP004⌃7, SET013⌃7, SEU558⌃1, SEU683⌃1, SEV143⌃5, SYO037⌃1, SYO062⌃4.004, SYO065⌃4.001, SYO066⌃4.004, MSC007⌃1.003.004, SEU938⌃5 and SEV106⌃5.
References
Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)
Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)
Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — a generic platform for the implementation of higher-order reasoners. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 325–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_22
Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)
Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_29
Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., et al. (eds.) 5th PAAR Workshop. CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)
Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of modal logic, vol. 3. Elsevier, Amsterdam (2006)
Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 454–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_35
Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab. Stanford University (2014)
Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Gabbay, D.M., Siekmann, J.H., Woods, J. (eds.) Handbook of the History of Logic. Computational Logic, vol. 9, pp. 215–254. North Holland/Elsevier, Amsterdam (2014)
Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type theory. Log. J. IGPL 18(6), 881–892 (2010)
Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC Series in Computing, Maun, Botswana, vol. 46, pp. 14–30. EasyChair (2017)
Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000). https://doi.org/10.1007/10722086_7
Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 492–495. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8_41
Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: Raedt, L.D., et al. (eds.) ECAI 2012 of Frontiers in AI and Applications, Montpellier, France, vol. 242, pp. 163–168. IOS Press (2012)
Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9
Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11
Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 269–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_20
Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological argument: a success story for AI in metaphysics. In: IJCAI 2016, vol. 1–3, pp. 936–942. AAAI Press (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Steen, A., Benzmüller, C. (2018). The Higher-Order Prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-94205-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94204-9
Online ISBN: 978-3-319-94205-6
eBook Packages: Computer ScienceComputer Science (R0)