The Higher-Order Prover Leo-III | SpringerLink
Skip to main content

The Higher-Order Prover Leo-III

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10900))

Included in the following conference series:

Abstract

The automated theorem prover Leo-III for classical higher-order logic with Henkin semantics and choice is presented. Leo-III is based on extensional higher-order paramodulation and accepts every common TPTP dialect (FOF, TFF, THF), including their recent extensions to rank-1 polymorphism (TF1, TH1). In addition, the prover natively supports almost every normal higher-order modal logic. Leo-III cooperates with first-order reasoning tools using translations to many-sorted first-order logic and produces verifiable proof certificates. The prover is evaluated on heterogeneous benchmark sets.

The work was supported by the German National Research Foundation (DFG) under grant BE 2501/11-1. For an extended version of this paper see arXiv:1802.02732.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Leo-III is freely available (BSD license) at http://github.com/leoprover/Leo-III.

  2. 2.

    Cf.  http://www.cs.miami.edu/~tptp/TPTP/Proposals/LogicSpecification.html.

  3. 3.

    Cf. [13, §2.2]; we refer to the literature [8] for more details on HOML.

  4. 4.

    Remark on CAX: In this special case of THM (theorem) the given axioms are inconsistent, so that anything follows, including the given conjecture. Unlike most other provers, Leo-III checks for this special situation.

  5. 5.

    This information is extracted from the TPTP problem rating information that is attached to each problem. The unsolved problems are NLP004⌃7, SET013⌃7, SEU558⌃1, SEU683⌃1, SEV143⌃5, SYO037⌃1, SYO062⌃4.004, SYO065⌃4.001, SYO066⌃4.004, MSC007⌃1.003.004, SEU938⌃5 and SEV106⌃5.

References

  1. Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)

    Article  MathSciNet  Google Scholar 

  2. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — a generic platform for the implementation of higher-order reasoners. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 325–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_22

    Chapter  Google Scholar 

  4. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)

    MATH  Google Scholar 

  5. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

    Article  MathSciNet  Google Scholar 

  6. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_29

    Chapter  Google Scholar 

  7. Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., et al. (eds.) 5th PAAR Workshop. CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)

    Google Scholar 

  8. Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of modal logic, vol. 3. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  9. Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 454–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_35

    Chapter  Google Scholar 

  10. Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab. Stanford University (2014)

    Google Scholar 

  11. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Gabbay, D.M., Siekmann, J.H., Woods, J. (eds.) Handbook of the History of Logic. Computational Logic, vol. 9, pp. 215–254. North Holland/Elsevier, Amsterdam (2014)

    Google Scholar 

  12. Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type theory. Log. J. IGPL 18(6), 881–892 (2010)

    Article  MathSciNet  Google Scholar 

  13. Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC Series in Computing, Maun, Botswana, vol. 46, pp. 14–30. EasyChair (2017)

    Google Scholar 

  14. Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000). https://doi.org/10.1007/10722086_7

    Chapter  MATH  Google Scholar 

  15. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 492–495. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8_41

    Chapter  Google Scholar 

  16. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: Raedt, L.D., et al. (eds.) ECAI 2012 of Frontiers in AI and Applications, Montpellier, France, vol. 242, pp. 163–168. IOS Press (2012)

    Google Scholar 

  17. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  18. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

    Chapter  Google Scholar 

  19. Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 269–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_20

    Chapter  Google Scholar 

  20. Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological argument: a success story for AI in metaphysics. In: IJCAI 2016, vol. 1–3, pp. 936–942. AAAI Press (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steen, A., Benzmüller, C. (2018). The Higher-Order Prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94205-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94204-9

  • Online ISBN: 978-3-319-94205-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics