A SAT-Based Approach to Learn Explainable Decision Sets | SpringerLink
Skip to main content

A SAT-Based Approach to Learn Explainable Decision Sets

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10900))

Included in the following conference series:

Abstract

The successes of machine learning in recent years have triggered a fast growing range of applications. In important settings, including safety critical applications and when transparency of decisions is paramount, accurate predictions do not suffice; one expects the machine learning model to also explain the predictions made, in forms understandable by human decision makers. Recent work proposed explainable models based on decision sets which can be viewed as unordered sets of rules, respecting some sort of rule non-overlap constraint. This paper investigates existing solutions for computing decision sets and identifies a number of drawbacks, related with rule overlap and succinctness of explanations, the accuracy of achieved results, but also the efficiency of proposed approaches. To address these drawbacks, the paper develops novel SAT-based solutions for learning decision sets. Experimental results on computing decision sets for representative datasets demonstrate that SAT enables solutions that are not only the most efficient, but also offer stronger guarantees in terms of rule non-overlap.

This work was supported by FCT grants SAFETY (SFRH/BPD/120315/2016) and ABSOLV (028986/02/SAICT/2017), and LASIGE Research Unit, ref. UID/CEC/00408/2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The generalization from \({\textsc {MinDS}}_{3}\) to \({\textsc {MinDS}}_{2}\) is straightforward, and omitted due to space constraints. Moreover, the model for \({\textsc {MinDS}}_{1}\) follows a similar approach.

  2. 2.

    https://github.com/lvhimabindu/interpretable_decision_sets/.

  3. 3.

    A support threshold parameter \(\epsilon \) in the Apriori algorithm ensures that the candidate itemsets are present in at least \(\epsilon \) data points.

  4. 4.

    https://github.com/EpistasisLab/penn-ml-benchmarks/.

  5. 5.

    Some of the PMLB datasets are inconsistent, i.e. they have multiple occurrences of the same samples marked by different labels. Since the proposed models assume consistent data, the datasets were replaced by their largest consistent subsets. The number of samples shown above corresponds to the size of the resulting consistent datasets.

  6. 6.

    These surprising results motivated in part our detailed analysis of overlap. It should be noted that the authors of IDS [21] have been informed of IDS’s poor performance and poor ability to avoid rule overlap, but have been unable to justify the results of IDS.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)

    Google Scholar 

  2. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifiably optimal rule lists. In: KDD, pp. 35–44 (2017)

    Google Scholar 

  3. Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree size as combinatorial optimisation. In: CP, pp. 173–187 (2009)

    Chapter  Google Scholar 

  4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  5. Cendrowska, J.: PRISM: an algorithm for inducing modular rules. Int. J. Man Mach. Stud. 27(4), 349–370 (1987)

    Article  Google Scholar 

  6. Clark, P., Boswell, R.: Rule induction with CN2: some recent improvements. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0017011

    Chapter  Google Scholar 

  7. Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3, 261–283 (1989)

    Google Scholar 

  8. Cohen, W.W.: Fast effective rule induction. In: ICML, pp. 115–123 (1995)

    Chapter  Google Scholar 

  9. DARPA: DARPA explainable Artificial Intelligence (XAI) program (2016). https://www.darpa.mil/program/explainable-artificial-intelligence

  10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT, pp. 502–518 (2003)

    Chapter  Google Scholar 

  11. EU Data Protection Regulation: Regulation (EU) 2016/679 of the European Parliament and of the Council (2016). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=en

  12. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  13. Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

    Book  MATH  Google Scholar 

  14. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2012)

    MATH  Google Scholar 

  15. Hauser, J.R., Toubia, O., Evgeniou, T., Befurt, R., Dzyabura, D.: Disjunctions of conjunctions, cognitive simplicity, and consideration sets. J. Mark. Res. 47(3), 485–496 (2010)

    Article  Google Scholar 

  16. ICML, WHI Workshop: ICML Workshop on Human Interpretability in Machine Learning. https://sites.google.com/view/whi2017/home. Accessed Aug 2017

  17. IJCAI, XAI Workshop: IJCAI Workshop on Explainable Artificial Intelligence (XAI). http://home.earthlink.net/~dwaha/research/meetings/ijcai17-xai/. Accessed Aug 2017

  18. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kamath, A.P., Karmarkar, N., Ramakrishnan, K.G., Resende, M.G.C.: A continuous approach to inductive inference. Math. Program. 57, 215–238 (1992)

    Article  MathSciNet  Google Scholar 

  20. Kearns, M.J., Li, M., Valiant, L.G.: Learning boolean formulas. J. ACM 41(6), 1298–1328 (1994)

    Article  MathSciNet  Google Scholar 

  21. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: KDD, pp. 1675–1684 (2016)

    Google Scholar 

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  23. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)

    Article  MathSciNet  Google Scholar 

  24. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

    Google Scholar 

  25. Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: IJCAI, pp. 1973–1979 (2015)

    Google Scholar 

  26. Michalski, R.S.: On the quasi-minimal solution of the general covering problem. In: International Symposium on Information Processing, pp. 125–128 (1969)

    Google Scholar 

  27. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  28. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  29. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided MaxSAT solving. JSAT 9, 129–134 (2015)

    MathSciNet  Google Scholar 

  30. NIPS, IML Symposium: NIPS Interpretable ML Symposium. http://interpretable.ml/. Accessed Dec 2017

  31. Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Min. 10(1), 36 (2017)

    Article  Google Scholar 

  32. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Quinlan, J.R.: Generating production rules from decision trees. In: IJCAI, pp. 304–307 (1987)

    Google Scholar 

  34. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffmann, Burlington (1993)

    Google Scholar 

  35. Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)

    Google Scholar 

  36. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: a compendium. SIGACT news 33(3), 32–49 (2002)

    Article  Google Scholar 

  37. Triantaphyllou, E.: Inference of a minimum size boolean function from examples by using a new efficient branch-and-bound approach. J. Global Optim. 5(1), 69–94 (1994)

    Article  MathSciNet  Google Scholar 

  38. Triantaphyllou, E.: Data Mining and Knowledge Discovery via Logic-Based Methods: Theory, Algorithms, and Applications. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-4419-1630-3

    Book  MATH  Google Scholar 

  39. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computation (Artificial Intelligence), pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28

    Chapter  Google Scholar 

  40. Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of two-level logic minimization. IEEE Trans. CAD Integr. Circuits Syst. 25(7), 1230–1246 (2006)

    Article  Google Scholar 

  41. Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., MacNeille, P.: Or’s of And’s for interpretable classification, with application to context-aware recommender systems. CoRR, abs/1504.07614 (2015)

    Google Scholar 

  42. Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., MacNeille, P.: A Bayesian framework for learning rule sets for interpretable classification. J. Mach. Learn. Res. 18, 1–37 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Ignatiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J. (2018). A SAT-Based Approach to Learn Explainable Decision Sets. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94205-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94204-9

  • Online ISBN: 978-3-319-94205-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics