Abstract
Solving optimization problems with SAT has a long tradition in the form of MaxSAT, which maximizes the weight of satisfied clauses in a propositional formula. The extension to maximum satisfiability modulo theories (MaxSMT) is less mature but allows problems to be formulated in a higher-level language closer to actual applications. In this paper we describe a new approach for solving MaxSMT based on lifting one of the currently most successful approaches for MaxSAT, the implicit hitting set approach, from the propositional level to SMT. We also provide a unifying view of how optimization, propositional reasoning, and theory reasoning can be combined in a MaxSMT solver. This leads to a generic framework that can be instantiated in different ways, subsuming existing work and supporting new approaches. Experiments with two instantiations clearly show the benefit of our generic framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
IHS MaxSAT solvers can be obtained by using the A-Sat rules and replacing \( T\text{- }SAT (AM,F)\) in ImprovedSolution with \( SAT (AM,F)\).
References
Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic optimization with SMT solvers. In: POPL, pp. 607–618. ACM (2014)
Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_18
Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_12
Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs. ACM Trans. Comput. Log. 16(2), 12:1–12:43 (2015)
Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_14
Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_27
Manolios, P., Pais, J., Papavasileiou, V.: The Inez mathematical programming modulo theories framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 53–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_4
Sebastiani, R., Trentin, P.: On optimization modulo theories, MaxSMT and sorting networks. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 231–248. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_14
Ansótegui, C., Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT evaluation 2017 (2017). http://mse17.cs.helsinki.fi/
Bacchus, F., Järvisalo, M.: Algorithms for maximum satisfiability with applications to AI. In: AAAI-2016 Tutoral (2016). https://www.cs.helsinki.fi/group/coreo/aaai16-tutorial/
Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_19
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Lovel and procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)
Sebastiani, R.: Lazy satisability modulo theories. JSAT 3(3–4), 141–224 (2007)
Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI, pp. 2717–2723. AAAI Press (2014)
Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_39
Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37
Chandrasekaran, K., Karp, R.M., Moreno-Centeno, E., Vempala, S.: Algorithms for implicit hitting set problems. In: SODA, SIAM, pp. 614–629 (2011)
Saikko, P., Wallner, J.P., Järvisalo, M.: Implicit hitting set algorithms for reasoning beyond NP. In: KR, pp. 104–113. AAAI Press (2016)
Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_21
Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed Up MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_21
Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016)
Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7
Bofill, M., Muñoz, V., Murillo, J.: Solving the wastewater treatment plant problem with SMT. CoRR abs/1609.05367 (2016)
Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. AI 62(3–4), 317–343 (2011)
Acknowledgments
This research has been supported by the Austrian Science Fund (FWF) under projects W1255-N23 and S11408-N23.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Fazekas, K., Bacchus, F., Biere, A. (2018). Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-94205-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94204-9
Online ISBN: 978-3-319-94205-6
eBook Packages: Computer ScienceComputer Science (R0)