Enhancing Confusion Entropy as Measure for Evaluating Classifiers | SpringerLink
Skip to main content

Enhancing Confusion Entropy as Measure for Evaluating Classifiers

  • Conference paper
  • First Online:
International Joint Conference SOCO’18-CISIS’18-ICEUTE’18 (SOCO’18-CISIS’18-ICEUTE’18 2018)

Abstract

Performance measures are used in Machine Learning to assess the behaviour of classifiers. Many measures have been defined on the literature. In this work we focus on Confusion Entropy (CEN), a measure based in Shannon’s Entropy. We introduce a modification of this measure that overcomes its disadvantages in the binary case that disables it as a suitable measure to compare classifiers. We compare this modification with CEN and other measures, presenting analytical results in some particularly interesting cases, as well as some heuristic computational experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antunes, F., Ribeiro, B., Pereira, F.: Probabilistic modeling and visualization for bankruptcy prediction. Appl. Soft Comput. 60, 831–843 (2017)

    Article  Google Scholar 

  2. Jin, H., Wang, X.-N., Gao, F., Li, J., Wei, J.-M.: Learning Decision Trees using Confusion Entropy. Proceedings of the 2013 International Conference on Machine Learning and Cybernetics, Tianjin, 14–17 July (2013)

    Google Scholar 

  3. Jurman, G., Riccadonna, S., Furlanello, C.: A comparison of MCC and CEN error measures in multi-class prediction. Plos One 7(8), 1–8 (2012)

    Article  Google Scholar 

  4. Lichman, M.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2013). https://archive.ics.uci.edu/ml/index.php

  5. Marques de S., J.-P., Bernardes, J., Ayres de Campos, D.: UCI Machine Learning Repository: Cardiotocography Data Set (2010)

    Google Scholar 

  6. Matthews, B.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et biophysica acta. Vol 405, Num 2, 442–451 (1975)

    Article  Google Scholar 

  7. Roumani, Y.-F., May, J.-H., Strum, D.-P.: Classifying highly imbalanced ICU data. Health Care Manag. Sci. 16, 119–128 (2013)

    Article  Google Scholar 

  8. Roumani, Y.-F., Rouman, Y., Nwankpa, J.-K., Tanniru, M.: Classifying readmissions to a cardiac intensive care unit. Ann. Oper. Res. 263(1–2), 429–451 (2018)

    Article  MathSciNet  Google Scholar 

  9. Sherman, I.-B.: On the Role of Genetic Algorithms in the Pattern Recognition Task of Classification. Master’s Thesis, University of Tennessee, 2017. http://trace.tennessee.edu/utk_gradthes/4780

  10. Sublime, J., Grozavu, N., Cabanes, G., Bennani, Y., Cornuéjols, A.: From Horizontal to Vertical Collaborative Clustering using Generative Topographic Maps. International Journal of Hybrid Intelligent Systems, vol. 12(4), 245–256 (2015). https://doi.org/10.3233/HIS-160219

    Article  Google Scholar 

  11. Sublime, J., Matei, B., Murena, P.-A.: Analysis of the influence of diversity in collaborative and multi-view clustering. In: 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, 4126–4133 (2017). https://doi.org/10.1109/IJCNN.2017.7966377

  12. Sublime, J., Matei, B., Cabanes, G., Grozavu, N., Bennani, Y., Cornuéjols, A.: Entropy based probabilistic collaborative clustering. Pattern Recogn. 72, 144–157 (2017)

    Article  Google Scholar 

  13. Wang, X.-N., Wei, J.-M., Jin, H., Yu, G., Zhang, H.-W.: Probabilistic Confusion Entropy for Evaluating Classifiers. Entropy 15, 4969–4992 (2013)

    Article  MathSciNet  Google Scholar 

  14. Wei, J.-M., Yuan, X.-Y., Hu, Q.-H., Wang, S.-Q.: A novel measure for evaluating classifiers. Expert Syst. Appl. 37, 3799–3809 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work have been supported by Ministerio de Economía y Competitividad, Gobierno de España, project ref. MTM2015 67802-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Núñez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delgado, R., Núñez-González, J.D. (2019). Enhancing Confusion Entropy as Measure for Evaluating Classifiers. In: Graña, M., et al. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. SOCO’18-CISIS’18-ICEUTE’18 2018. Advances in Intelligent Systems and Computing, vol 771. Springer, Cham. https://doi.org/10.1007/978-3-319-94120-2_8

Download citation

Publish with us

Policies and ethics