Human Movements: Synergies, Stability, and Agility | SpringerLink
Skip to main content

Human Movements: Synergies, Stability, and Agility

  • Chapter
  • First Online:
Biomechanics of Anthropomorphic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 124))

Abstract

When people move, they organize large, abundant sets of elements (limbs, joints, digits, muscles, motor units, etc.) in a task–specific way by the central nervous system. Such organizations (synergies) ensure action stability, which is crucial given the varying internal body states and external forces. Action stability is controlled in a task-specific way. In particular, stability is reduced in a feed-forward manner (anticipatory synergy adjustment, ASA) if a person plans to perform a quick change of a salient performance variable. The importance of controlled stability for everyday movements is exemplified by studies of neurological patients who show deficits in both aspects of controlled stability: reduced stability during steady-state actions and small/delayed ASAs in preparation to a quick action. The physical approach to movement synergies has been developed using two theoretical frameworks. One of them is the idea of control with spatial referent coordinates (RCs) for salient variables. The other is the idea of intention-specific stability of redundant systems developed within the uncontrolled manifold (UCM) hypothesis. The RC and UCM hypotheses have been united into a single theory incorporating the idea of hierarchical control. This theory is able to account for results of a variety of studies that used perturbations of ongoing movements, analysis of variance across repetitive trials, and analysis of motor equivalence. Recent studies have provided links of this theory to neurophysiological structures and provide tools sensitive to impaired stability and agility of movements in patients with various neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambike, S., Mattos, D., Zatsiorsky, V.M., Latash, M.L.: Unsteady steady-states: central causes of unintentional force drift. Exp. Brain Res. 234, 3597–3611 (2016)

    Article  Google Scholar 

  2. Babikian, S., Kanso, E., Kutch, J.J.: Cortical activity predicts good variation in human motor output. Experimental Brain Research (2017) (e-pub https://doi.org/10.1007/s00221-017-4876-9)

  3. Bastian, A.J., Martin, T.A., Keating, J.G., Thach, W.T.: Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J. Neurophysiol. 76, 492–509 (1996)

    Article  Google Scholar 

  4. Belenkiy, V.Y., Gurfinkel, V.S., Pal’tsev, Y.I.: Elements of control of voluntary movements. Biofizika 10, 135–141 (1967)

    Google Scholar 

  5. Bernstein, N.A.: A new method of mirror cyclographie and its application towards the study of labor movements during work on a workbench. Hygiene, Safety and Pathology of Labor, # 5, pp. 3–9, and # 6, pp. 3–11 (1930) (in Russian)

    Google Scholar 

  6. Bernstein, N.A.: The problem of interrelation between coordination and localization. Arch. Biol. Sci. 38, 1–35 (1935). (in Russian)

    Google Scholar 

  7. Bernstein, N.A.: On the Construction of Movements. Medgiz, Moscow (1947). (in Russian)

    Google Scholar 

  8. Bernstein, N.A.: The Co-ordination and Regulation of Movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  9. Bobath, B.: Adult Hemiplegia: Evaluation and Treatment. William Heinemann, London (1978)

    Google Scholar 

  10. Danna-Dos-Santos, A., Slomka, K., Zatsiorsky, V.M., Latash, M.L.: Muscle modes and synergies during voluntary body sway. Exp. Brain Res. 179, 533–550 (2007)

    Article  Google Scholar 

  11. d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6, 300–308 (2003)

    Article  Google Scholar 

  12. DeWald, J.P., Pope, P.S., Given, J.D., Buchanan, T.S., Rymer, W.Z.: Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118, 495–510 (1995)

    Article  Google Scholar 

  13. Diedrichsen, J., Shadmehr, R., Ivry, R.B.: The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. 14, 31–39 (2010)

    Article  Google Scholar 

  14. Falaki, A., Huang, X., Lewis, M.M., Latash, M.L.: Impaired synergic control of posture in Parkinson’s patients without postural instability. Gait Posture 44, 209–215 (2016)

    Article  Google Scholar 

  15. Feldman, A.G.: Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II Controllable parameters of the muscle. Biophysics 11, 565–578 (1966)

    Google Scholar 

  16. Feldman, A.G.: Central and Reflex Mechanisms of Motor Control. Nauka, Moscow (in Russian) (1979)

    Google Scholar 

  17. Feldman, A.G.: Once more on the equilibrium-point hypothesis (λ-model) for motor control. J. Mot. Behav. 18, 17–54 (1986)

    Article  Google Scholar 

  18. Feldman, A.G., Orlovsky, G.N.: The influence of different descending systems on the tonic stretch reflex in the cat. Exp. Neurol. 37, 481–494 (1972)

    Article  Google Scholar 

  19. Hoehn, M., Yahr, M.: Parkinsonism: onset, progression and mortality. Neurology 17, 427–442 (1967)

    Article  Google Scholar 

  20. Jerde, T.E., Soechting, J.F., Flanders, M.: Coarticulation in fluent fingerspelling. J. Neurosci. 23, 2383–2393 (2003)

    Article  Google Scholar 

  21. Jo, H.J., Maenza, C., Good, D.C., Huang, X., Park, J., Sainburg, R.L., Latash, M.L.: Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments. Neuroscience 319, 194–205 (2016)

    Article  Google Scholar 

  22. Jo, H.J., Lucassen, E., Huang, X., Latash, M.L.: Changes in multi-digit synergies and their feed-forward adjustments in multiple sclerosis. J. Mot. Behav. 49, 218–228 (2017)

    Google Scholar 

  23. Johansson, R.S., Westling, G.: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 56, 550–564 (1984)

    Article  Google Scholar 

  24. Klous, M., Danna-dos-Santos, A., Latash, M.L.: Multi-muscle synergies in a dual postural task: evidence for the principle of superposition. Exp. Brain Res. 202, 457–471 (2010)

    Article  Google Scholar 

  25. Krishnamoorthy, V., Goodman, S.R., Latash, M.L., Zatsiorsky, V.M.: Muscle synergies during shifts of the center of pressure by standing persons: Identification of muscle modes. Biol. Cybern. 89, 152–161 (2003)

    Article  Google Scholar 

  26. Latash, M.L.: Synergy. Oxford University Press, New York (2008)

    Book  Google Scholar 

  27. Latash, M.L.: Towards physics of neural processes and behavior. Neurosci. Biobehav. Rev. 69, 136–146 (2016)

    Article  Google Scholar 

  28. Latash, M.L., Scholz, J.F., Danion, F., Schöner, G.: Structure of motor variability in marginally redundant multi-finger force production tasks. Exp. Brain Res. 141, 153–165 (2001)

    Article  Google Scholar 

  29. Latash, M.L., Shim, J.K., Smilga, A.V., Zatsiorsky, V.: A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model. Biol. Cybern. 92, 186–191 (2005)

    Article  Google Scholar 

  30. Latash, M.L., Huang, X.: Neural control of movement stability: lessons from studies of neurological patients. Neuroscience 301, 39–48 (2015)

    Article  Google Scholar 

  31. Latash, M.L., Zatsiorsky, V.M.: Joint stiffness: myth or reality? Hum. Mov. Sci. 12, 653–692 (1993)

    Article  Google Scholar 

  32. Latash, M.L., Zatsiorsky, V.M.: Biomechanics and Motor Control: Defining Central Concepts. Academic Press, New York, NY (2016)

    Google Scholar 

  33. Lewis, M.M., Lee, E.-Y., Jo, H.J., Park, J., Latash, M.L., Huang, X.: Synergy as a new and sensitive marker of basal ganglia dysfunction: a study of asymptomatic welders. Neurotoxicology 56, 76–85 (2016)

    Article  Google Scholar 

  34. Liddell, E.G.T., Sherrington, C.S.: Reflexes in response to stretch (myotatic reflexes). Proc. R. Soc. Lond., Series B 96, 212–242 (1924)

    Google Scholar 

  35. Loeb, G.E.: What might the brain know about muscles, limbs and spinal circuits? Prog. Brain Res. 123, 405–409 (1999)

    Article  Google Scholar 

  36. Martin, V., Scholz, J.P., Schöner, G.: Redundancy, self-motion, and motor control. Neural Comput. 21, 1371–1414 (2009)

    Article  Google Scholar 

  37. Massion, J.: Movement, posture and equilibrium–interaction and coordination. Prog. Neurobiol. 38, 35–56 (1992)

    Article  Google Scholar 

  38. Matthews, P.B.C.: The dependence of tension upon extension in the stretch reflex of the soleus of the decerebrate cat. J. Physiol. 47, 521–546 (1959)

    Article  Google Scholar 

  39. Mattos, D., Latash, M.L., Park, E., Kuhl, J., Scholz, J.P.: Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence. J. Neurophysiol. 106, 1424–1436 (2011)

    Article  Google Scholar 

  40. Mattos, D., Kuhl, J., Scholz, J.P., Latash, M.L.: Motor equivalence (ME) during reaching: is ME observable at the muscle level? Mot. Control 17, 145–175 (2013)

    Article  Google Scholar 

  41. Mattos, D., Schöner, G., Zatsiorsky, V.M., Latash, M.L.: Motor equivalence during accurate multi-finger force production. Exp. Brain Res. 233, 487–502 (2015)

    Article  Google Scholar 

  42. Olafsdottir, H., Yoshida, N., Zatsiorsky, V.M., Latash, M.L.: Anticipatory covariation of finger forces during self-paced and reaction time force production. Neurosci. Lett. 381, 92–96 (2005)

    Article  Google Scholar 

  43. Park, J., Jo, H.J., Lewis, M.M., Huang, X., Latash, M.L.: Effects of Parkinson’s disease on optimization and structure of variance in multi-finger tasks. Exp. Brain Res. 231, 51–63 (2013)

    Article  Google Scholar 

  44. Park, J., Lewis, M.M., Huang, X., Latash, M.L.: Dopaminergic modulation of motor coordination in Parkinson’s disease. Parkinsonism Relat. Disord. 20, 64–68 (2014)

    Article  Google Scholar 

  45. Park, J., Wu, Y.-H., Lewis, M.M., Huang, X., Latash, M.L.: Changes in multi-finger interaction and coordination in Parkinson’s disease. J. Neurophysiol. 108, 915–924 (2012)

    Article  Google Scholar 

  46. Parsa, B., O’Shea, D.J., Zatsiorsky, V.M., Latash, M.L.: On the nature of unintentional action: a study of force/moment drifts during multi-finger tasks. J. Neurophysiol. 116, 698–708 (2016)

    Article  Google Scholar 

  47. Parsa, B., Zatsiorsky, V.M., Latash, M.L.: Optimality and stability of intentional and unintentional actions: II. Motor equivalence and structure of variance. Exp. Brain Res. 235, 457–470 (2017)

    Article  Google Scholar 

  48. Prilutsky, B.I., Zatsiorsky, V.M.: Optimization-based models of muscle coordination. Exerc. Sport Sci. Rev. 30, 32–38 (2002)

    Article  Google Scholar 

  49. Pruszynski, J.A., Scott, S.H.: Optimal feedback control and the long-latency stretch response. Exp. Brain Res. 218, 341–359 (2012)

    Article  Google Scholar 

  50. Reisman, D., Scholz, J.P.: Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain 126, 2510–2527 (2003)

    Article  Google Scholar 

  51. Reisman, D.S., Scholz, J.P.: Workspace location influences joint coordination during reaching in post-stroke hemiparesis. Exp. Brain Res. 170, 265–276 (2006)

    Article  Google Scholar 

  52. Sainburg, R.L., Ghilardi, M.F., Poizner, H., Ghez, C.: Control of limb dynamics in normal subjects and patients without proprioception. J. Neurophysiol. 73, 820–835 (1995)

    Article  Google Scholar 

  53. Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., Ernst, M., Moscatelli, A., Jörntell, H., Kappers, A.M., Kyriakopoulos, K., Albu-Schäffer, A., Castellini, C., Bicchi, A.: Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 17, 1–23 (2016)

    Article  Google Scholar 

  54. Scholz, J.P., Schöner, G., Hsu, W.L., Jeka, J.J., Horak, F., Martin, V.: Motor equivalent control of the center of mass in response to support surface perturbations. Exp. Brain Res. 180, 163–179 (2007)

    Article  Google Scholar 

  55. Scholz, J.P., Danion, F., Latash, M.L., Schöner, G.: Understanding finger coordination through analysis of the structure of force variability. Biol. Cybern. 86, 29–39 (2002)

    Article  Google Scholar 

  56. Scholz, J.P., Reisman, D., Schoner, G.: Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task. Exp. Brain Res. 141, 485–500 (2001)

    Article  Google Scholar 

  57. Scholz, J.P., Schöner, G.: The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126, 289–306 (1999)

    Article  Google Scholar 

  58. Schöner, G.: Recent developments and problems in human movement science and their conceptual implications. Ecol. Psychol. 8, 291–314 (1995)

    Article  Google Scholar 

  59. Shim, J.K., Latash, M.L., Zatsiorsky, V.M.: The central nervous system needs time to organize task-specific covariation of finger forces. Neurosci. Lett. 353, 72–74 (2003)

    Article  Google Scholar 

  60. Shim, J.K., Olafsdottir, H., Zatsiorsky, V.M., Latash, M.L.: The emergence and disappearance of multi-digit synergies during force production tasks. Exp. Brain Res. 164, 260–270 (2005)

    Article  Google Scholar 

  61. Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7, 907–915 (2004)

    Article  Google Scholar 

  62. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002)

    Article  Google Scholar 

  63. Todorov, E.: Efficient computation of optimal actions. Proc. Natl. Acad. Sci. 106, 11478–11483 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latash, M.L. (2019). Human Movements: Synergies, Stability, and Agility. In: Venture, G., Laumond, JP., Watier, B. (eds) Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-93870-7_7

Download citation

Publish with us

Policies and ethics