Design and Control of a Passive Noise Rejecting Variable Stiffness Actuator | SpringerLink
Skip to main content

Design and Control of a Passive Noise Rejecting Variable Stiffness Actuator

  • Chapter
  • First Online:
Biomechanics of Anthropomorphic Systems

Abstract

Inspired by the biomechanical and passive properties of human muscles, we present a novel actuator named passive noise rejecting Variable Stiffness Actuator (pnrVSA). For a single actuated joint, the proposed design adopts two motor-gear groups in an agonist-antagonist configuration coupled to the joint via serial non-linear springs. From a mechanical standpoint, the introduced novelty resides in two parallel non-linear springs connecting the internal motor-gear groups to the actuator frame. These additional elastic elements create a closed force path that mechanically attenuates the effects of external noise. We further explore the properties of this novel actuator by modeling the effect of gears static frictions on the output joint equilibrium position during the co-contraction of the agonist and antagonist side of the actuator. As a result, we found an analytical condition on the spring potential energies to guarantee that co-activation reduces the effect of friction on the joint equilibrium position. The design of an optimized set of springs respecting this condition leads to the construction of a prototype of our actuator. To conclude the work, we also present two control solutions that exploit the mechanical design of the actuator allowing to control both the joint stiffness and the joint equilibrium position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An example of unstable force field manipulation is represented by the task of keeping a screwdriver in the slot of a screw, as reported by Burdet et al. [8].

  2. 2.

    The same model can represent a classical SEA by using a constant stiffness spring, or a stiff actuator by removing the spring and connecting the joint directly to the transmission.

  3. 3.

    To make the analysis as general as possible, the non-linear spring potential energies are kept unspecified in the theoretical analysis.

  4. 4.

    In our actuator the main source of static friction are the gearboxes that have been used to connect the electric motors to the capstans (see Fig. 4).

  5. 5.

    This assumption derives from the fact that co-activation increases internal forces. Certain friction forces, such as stiction, increase with gear teeth normal forces and therefore an increased stiction should be expected in response to an increased level of internal forces.

References

  1. Albu-Schaffer, A., Hirzinger, G.: Cartesian impedance control techniques for torque controlled light-weight robots. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA ’02. vol. 1, pp. 657–663 (2002). https://doi.org/10.1109/ROBOT.2002.1013433

  2. Armstrong, B.: Dynamics for robot control: Friction modelling and ensuring excitation during parameter identification. Dissertation, Stanford University (1988)

    Google Scholar 

  3. Berret, B., Ivaldi, S., Nori, F., Sandini, G.: Stochastic optimal control with variable impedance manipulators in presence of uncertainties and delayed feedback. In: International Conference on Intelligent Robots and Systems (IROS2011), pp. 4354–4359 . IEEE (2011)

    Google Scholar 

  4. Berret, B., Sandini, G., Nori, F.: Design principles for muscle-like variable impedance actuators with noise rejection property via co-contraction. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 222–227 (2012). https://doi.org/10.1109/HUMANOIDS.2012.6651524

  5. Berret, B., Yung, I., Nori, F.: Open-loop stochastic optimal control of a passive noise-rejection variable stiffness actuator: application to unstable tasks. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3029–3034 (2013). https://doi.org/10.1109/IROS.2013.6696785

  6. Bicchi, A., Tonietti, G., Piaggio, E.: Design, realization and control of soft robot arms for intrinsically safe interaction with humans. In: Proceedings of the IARP/RAS Workshop on Technical Challenges for Dependable Robots in Human Environments, pp. 79–87 (2002)

    Google Scholar 

  7. Bona, B., Indri, M.: Friction compensation in robotics: an overview. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05, pp. 4360–4367 (2005). https://doi.org/10.1109/CDC.2005.1582848

  8. Burdet, E., Osu, R., Franklin, D.W., Milner, T.E., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–9 (2001a). https://doi.org/10.1038/35106566

    Article  Google Scholar 

  9. Burdet, E., Osu, R., Franklin, D.W., Milner, T.E., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001b). https://doi.org/10.1038/35106566

    Article  Google Scholar 

  10. de Wit, C.C., Olsson, H., Astrom, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1994)

    MathSciNet  Google Scholar 

  11. De Luca, C.J., Mambrito, B.: Voluntary control of motor units in human antagonist muscles: coactivation and reciprocal activation. J. Neurophysiol. 58(3), 525–542 (1987). http://jn.physiology.org/content/58/3/525, http://jn.physiology.org/content/58/3/525.full.pdf

  12. Del Prete, A., Nori, F., Metta, G,. Natale, L.: Control of contact forces: the role of tactile feedback for contact localization. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)

    Google Scholar 

  13. Eiberger, O., Haddadin, S., Weis, M., Albu-Sch äffer, A., Hirzinger, G.: On joint design with intrinsic variable compliance: derivation of the DLR QA-joint, pp. 1687–1694 (2010)

    Google Scholar 

  14. Fiorio, L., Parmiggiani, A., Berret, B., Sandini, G., Nori, F.: pnrVSA: human-like actuator with non-linear springs in agonist-antagonist configuration (2012)

    Google Scholar 

  15. Fiorio, L., Romano, F., Parmiggiani, A., Sandini, G., Nori, F.: On the effects of internal stiction in pnrVIA actuators. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 362–367 (2013) https://doi.org/10.1109/HUMANOIDS.2013.7030000

  16. Fiorio, L., Romano, F., Parmiggiani, A., Sandini, G., Nori, F.: Stiction compensation in agonist-antagonist variable stiffness actuators. In: Proceedings of Robotics: Science and Systems, Berkeley, USA (2014)

    Google Scholar 

  17. Fumagalli, M., Ivaldi, S., Randazzo, M., Natale, L., Metta, G., Sandini, G., Nori, F.: Force feedback exploiting tactile and proximal force/torque sensing. Theory and implementation on the humanoid robot iCub. Autonom. Robots 33(4), 381–398 (2012)

    Article  Google Scholar 

  18. Hill, A., Gasser, H.: The dynamics of muscular contraction (1924)

    Google Scholar 

  19. Hogan, N.: Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29(8), 681–690 (1984). https://doi.org/10.1109/TAC.1984.1103644

    Article  MATH  Google Scholar 

  20. Kappen, H.J.: Optimal Control Theory and the Linear Bellman Equation, p. 363387. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511984679.018

  21. McMahon, T.: Muscle, Reflexes, and Locomotion (1984)

    Google Scholar 

  22. Migliore, S. A., Brown, E. A., DeWeerth, S. P.: Biologically inspired joint stiffness control. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, April 18–22, 2005, Barcelona, Spain, pp. 4508–4513 (2005). https://doi.org/10.1109/ROBOT.2005.1570814

  23. Nori, F., Berret, B., Fiorio, L., Parmiggiani, A., Sandini, G.: Control of a single degree of freedom noise rejecting-variable impedance. In: Proceedings of the 10th international IFAC symposium on Robot Control (SYROCO2012) (2012)

    Google Scholar 

  24. Paillard, J.: Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can. J. Physiol. Pharmacol. 74, 401–417 (1996)

    Article  Google Scholar 

  25. Parra-Vega, V., Arimoto, S.: A passivity based adaptive sliding mode position-force control for robot manipulators. Int. J. Adapt. Control Signal Process. 10, 365–377 (1996)

    Google Scholar 

  26. Petit, F., Chalon, M., Friedl, W., Grebenstein, M., Albu-Schäffer, A., Hirzinger, G.: Bidirectional antagonistic variable stiffness actuation: analysis, design & implementation. In: ICRA, pp. 4189–4196 (2010)

    Google Scholar 

  27. Polit, A., Bizzi, E.: Characteristics of motor programs underlying arm movements in monkeys. J. Neurophysiol. 42(1), 183–194 (1979)

    Article  Google Scholar 

  28. Pratt, G., Williamson, M.: Series elastic actuators. In: 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Proceedings, vol. 1, pp. 399–406 (1995)

    Google Scholar 

  29. Romano, F., Fiorio, L., Sandini, G., Nori, F.: Control of a two-DOF manipulator equipped with a PNR-variable stiffness actuator. In: 2014 IEEE International Symposium on Intelligent Control (ISIC), pp 1354–1359 (2014).https://doi.org/10.1109/ISIC.2014.6967620

  30. Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 2171–2176 (2008). https://doi.org/10.1109/ROBOT.2008.4543528

  31. Theodorou, E., Buchli, J., Schaal, S.: A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Tomei, P.: Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control 45(11), 2164–2169 (2000)

    Article  MathSciNet  Google Scholar 

  33. Tonietti, G., Schiavi, R., Bicchi, A.: Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: ICRA, pp 526–531. IEEE (2005)

    Google Scholar 

  34. Traversaro S, Pucci D, Nori F (2015) In situ calibration of six-axis force-torque sensors using accelerometer measurements. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 2111–2116

    Google Scholar 

  35. Van Ham, R., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16, 81–94 (2009)

    Article  Google Scholar 

  36. Vanderborght, B., Albu-Sch äffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M.G., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N.G., Damme, M.V., Ham, R.V., Visser, L.C., Wolf, S.: Variable impedance actuators: a review. Robot. Autonom. Syst. 61(12), 1601–1614 (2013)

    Google Scholar 

  37. Vitiello, N., Cattin, E., Roccella, S., Giovacchini, F., Vecchi, F., Carrozza, M.C., Dario, P.: The neurarm: towards a platform for joint neuroscience experiments on human motion control theories. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1852–1857. IEEE (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fiorio .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Sensitivity Matrix Computation

Let’s represent (2) in a compact way, with the following definition:

$$\begin{aligned} {\left\{ \begin{array}{ll} -U_1' (\hat{\vartheta }) - U_2' (\hat{\vartheta } + \hat{q}) = {\hat{\tau }}_{\vartheta } \\ U_4' ({\hat{\vartheta }}^a) + U_3' (\hat{\vartheta }^a -\hat{q}) = {\hat{\tau }}_{\vartheta ^a}\\ - U_2' (\hat{\vartheta } + \hat{q}) + U_3' ({\hat{\vartheta }}^a -\hat{q}) = {\hat{\tau }}_{q} \end{array}\right. } \iff f (\alpha \text {,} \tau ) = 0. \end{aligned}$$

By resourcing to the implicit function theorem, the equation \(f (\alpha \text {,} \tau ) = 0\) locally defines a function \(\alpha (\tau )\) (equilibrium configuration) with sensitivity:

$$\begin{aligned} \frac{\partial \alpha }{\partial \tau } = - {\left[ \frac{\partial f}{\partial \alpha }\right] }^{-1} \frac{\partial f}{\partial \tau }. \end{aligned}$$

as easily follows by numerical derivation of the constrain equation \(f (\alpha (\tau ) \text {,} \tau ) = 0\):

$$\begin{aligned} \frac{\partial f}{\partial \alpha } \frac{\partial \alpha }{\partial \tau } + \frac{\partial f}{\partial \tau } = 0 \rightarrow \frac{\partial \alpha }{\partial \tau } = - {\left[ \frac{\partial f}{\partial \alpha }\right] }^{-1} \frac{\partial f}{\partial \tau }. \end{aligned}$$

Using the analytical expression of f given by (2), we obtain:

$$ \frac{\partial f}{\partial \alpha } = \begin{bmatrix} \frac{\partial f}{\partial \hat{\vartheta }} \frac{\partial f}{\partial {\hat{\vartheta }}^a} \frac{\partial f}{\partial \hat{q}} \end{bmatrix} = \begin{bmatrix} -U_1'' - U_2''&0&-U_2'' \\ 0&U_4'' + U_3''&- U_3'' \\ -U_2''&U_3''&- U_2'' - U_3'' \\ \end{bmatrix}, $$

and:

$$ \frac{\partial f}{\partial \tau } = \begin{bmatrix} -1&0&0 \\ 0&-1&0 \\ 0&0&-1 \\ \end{bmatrix} $$

which eventually results in the following expression:

$$ \frac{\partial \alpha }{\partial \tau } = {\begin{bmatrix} -U_1'' - U_2''&0&-U_2'' \\ 0&U_4'' + U_3''&- U_3'' \\ -U_2''&U_3''&- U_2'' - U_3'' \\ \end{bmatrix}}^{-1} $$
$$ \frac{\partial \alpha }{\partial \tau } = \begin{bmatrix} \frac{\partial \hat{\vartheta }}{\partial {\hat{\tau }}_{\vartheta }}&\frac{\partial \hat{\vartheta }}{\partial {{\hat{\tau }}_{\vartheta }}^a}&\frac{\partial \hat{\vartheta }}{\partial {\hat{\tau }}_q}\\ \frac{\partial {\hat{\vartheta }}^a}{\partial {\hat{\tau }}_{\vartheta }}&\frac{\partial {\hat{\vartheta }}^a}{\partial {{\hat{\tau }}_{\vartheta }}^a}&\frac{\partial {\hat{\vartheta }}^a}{\partial {\hat{\tau }}_q}\\ \frac{\partial \hat{q}}{\partial {\hat{\tau }}_{\vartheta }}&\frac{\partial \hat{q}}{\partial {{\hat{\tau }}_{\vartheta }}^a}&\frac{\partial \hat{q}}{\partial {\hat{\tau }}_q} \end{bmatrix} = $$
$$ \left[ {\begin{matrix} -(U_2'' U_3'' + U_2'' U_4'' + U_3'' U_4'') &{} - U_2'' U_3'' &{} U_2'' (U_3'' + U_4'') \\ U_2'' U_3'' &{} U_1'' U_2'' + U_1'' U_3'' + U_2'' U_3'' &{} -U_3'' (U_1'' + U_2'')\\ U_2'' (U_3'' + U_4'') &{} U_3'' (U_1'' + U_2'') &{} -(U_1'' + U_2'')(U_3'' + U_4'') \end{matrix}} \right] $$
$$\begin{aligned} \cdot \frac{1}{U_1'' U_2'' U_3'' + U_1'' U_2'' U_4'' + U_1'' U_3'' U_4'' + U_2'' U_3'' U_4'' } \end{aligned}$$

1.2 Actuator Specifications

The specifications of the actuator are recapped in Fig. 13.

Fig. 13
figure 13

Source [14]

The VIACTORS VSA datasheet of the pnrVSA. In the plots on the right hand side we report the pnrVSA characteristic curves for different internal motor pretensions. This pretension has to be interpreted as the applied torque at motor capstan, ranging from 15 to 90% of the stall torque. The VIACTORS Variable Stiffness Joint Datasheet was developed within the VIACTORS project, which is a part of the EU 7th Framework Programme.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fiorio, L., Romano, F., Parmiggiani, A., Berret, B., Metta, G., Nori, F. (2019). Design and Control of a Passive Noise Rejecting Variable Stiffness Actuator. In: Venture, G., Laumond, JP., Watier, B. (eds) Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-93870-7_11

Download citation

Publish with us

Policies and ethics