Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data) | SpringerLink
Skip to main content

Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data)

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2018)

Abstract

Imagine a platform in which the teacher can access to identify patterns in the learning styles of students attached to their course, and in turn this will allow you to know which pedagogical techniques to use in the teaching process - learning to increase the probability of success in your classroom?. What if this tool could be used by students to identify the teacher that best suits their learning style?. Yes, was the tool able to improve its prediction regarding academic performance as time passes? It is obvious that this would require specialized software in the handling of large data. This research-development aims to answer these questions, proposing a design methodology of a student pattern recognition tool to facilitate the teaching-learning process through Knowledge Data Discovery (Big Data). After an extensive document review and validation of experts in various areas of knowledge, the methodology obtained was structured in four phases: identification of patterns, analysis of the teaching-learning process, Knowledge Data Discovery and Development, implementation and validation of software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sánchez Guzmán, D.: Agentes Inteligentes; Diseño e Implementación para la Enseñanza de la Física, Tesis Doctoral en Tecnología Avanzada, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, México (2009)

    Google Scholar 

  2. Mondragón Becerra, R.: Exploraciones sobre el Soporte Multi-Agente BDI en el Proceso de Descubrimiento de Conocimiento en Bases de Datos, Tesis de Maestría en Inteligencia Artificial. Departamento de Inteligencia Artificial, Universidad Veracruzana, México (2015)

    Google Scholar 

  3. Reyes Saldaña, J.F., García Flores, R.: El proceso de descubrimiento de conocimiento de bases de datos. Revista Ingenierías, vol. VIII, no. 26, pp. 37–47 (2015)

    Google Scholar 

  4. Ballesteros Román, A.: Minería de Datos Educativa Aplicada a la Investigación de Patrones de Aprendizaje en Estudiante en Ciencias. Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, México City (2012)

    Google Scholar 

  5. Gómez Arenas, L.I.: Evaluación Comparativa de Herramientas para la Minería de Datos y sus Aplicaciones. Instituto Tecnológico de León, Guanajuato (2015)

    Google Scholar 

  6. Cristobal, R., Sebastian, V., Mykola, P., Baker, R.: Handbook of Educational Data Mining. CRC Data Mining and Knowledge Discovery Series, 1st edn. CRC Press, Chapman & Hall, Boca Raton (2010)

    Google Scholar 

  7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems, 2nd edn. Morgan Kaufmann Publishers, Burlington (2016). (Series Editor J. Gray)

    Google Scholar 

  8. Romero Morales, C., Ventura Soto, S., Hérvas Martínez, C.: Estado actual de la aplicación de la minería de datos a los sistemas de enseñanza basada en web. In: Actas del III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005, pp. 49–56 (2015)

    Google Scholar 

  9. Luan J.: Aplicaciones de Minería de datos en la Educación Superior. IBM Press and IBM Corporation, Estados Unidos de America (2012))

    Google Scholar 

  10. Peña-Ayala, A.: Educational data mining: a survey and a data mining-based analysis of recent Works. WOLNM & ESIME Zacatenco, Instituto Politécnico Nacional, México (2013)

    Google Scholar 

  11. La Red Martínez, D.L., Karanik, M., giovannini, M., Pinto, N.: Perfiles de Rendimiento Académico: Un Modelo basado en Minería de datos. Campus Virtuales, vol. IV, no. 1, pp. 12–30 (2015). www.revistacampusvirtuales.es. Consultado el 12 Nov 2015

  12. Thakuriah, P.V., Tilahun, N.Y., Zellner, M.: Big data and urban informatics: innovations and challenges to urban planning and knowledge discovery. In: Thakuriah, P., Tilahun, N., Zellner, M. (eds.) Seeing Cities Through Big Data, pp. 11–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-40902-3_2

    Chapter  Google Scholar 

  13. Roiger, R.J.: Data Mining: A Tutorial-Based Primer. CRC Press, Boca Raton (2017)

    Google Scholar 

  14. Khan, A., Uddin, S., Srinivasan, U.: Understanding chronic disease comorbidities from baseline networks: knowledge discovery utilising administrative healthcare data. In: Proceedings of the Australasian Computer Science Week Multiconference, p. 57. ACM (2017)

    Google Scholar 

  15. Bajorath, J.: Compound Data Mining for Drug Discovery. Bioinformatics: Structure, Function, and Applications, vol. II, pp. 247–256 (2017)

    Google Scholar 

  16. Bandaru, S., Ng, A.H.C., Deb, K.: Data mining methods for knowledge discovery in multi-objective optimization: part A-survey. Expert Syst. Appl. 70, 139–159 (2017)

    Article  Google Scholar 

  17. Chen, C., et al.: KDD 2016-Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery (2016)

    Google Scholar 

  18. Zobaa, A.F., Vaccaro, A., Lai, L.L.: Guest editorial enabling technologies and methodologies for knowledge discovery and data mining in smart grids. IEEE Trans. Ind. Inf. 12(2), 820–823 (2016)

    Article  Google Scholar 

  19. Jiang, H., et al.: Research on pattern analysis and data classification methodology for data mining and knowledge discovery. Int. J. Hybrid Inf. Technol. 9(3), 179–188 (2016)

    Article  Google Scholar 

  20. Mendoza, A.A.M., Acosta, R.J.H.: Propuesta para la predicción del rendimiento académico de los estudiantes de la Universidad del Atlántico, basado en la aplicación del análisis discriminante. In: WEEF 2013 Cartagena, August 2013

    Google Scholar 

  21. Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.): PAKDD 2017. LNCS (LNAI), vol. 10234. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7

    Book  Google Scholar 

  22. Cañon, M., Jimenez, S.: Enfrentando resultados programa de ingeniería de sistemas de la USB con las pruebas Saber Pro. Revista Investigación y Desarrollo en TIC, vol. 3, no. 1 (2017)

    Google Scholar 

  23. Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística, vol. 9, no. 1, pp. 93–106 (2016). (85–97 English)

    Google Scholar 

  24. Viloria, A., Mercedes, G.-A.: Statistical adjustment module advanced optimizer planner and sap generated the case of a food production company. Indian J. Sci. Technol. 9(47), 1–5 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelec Viloria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viloria, A., Lis-Gutiérrez, JP., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J. (2018). Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan, Y., Shi, Y., Tang, Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science(), vol 10943. Springer, Cham. https://doi.org/10.1007/978-3-319-93803-5_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93803-5_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93802-8

  • Online ISBN: 978-3-319-93803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics