On the Number of Signals in Multivariate Time Series | SpringerLink
Skip to main content

On the Number of Signals in Multivariate Time Series

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Abstract

We assume a second-order source separation model where the observed multivariate time series is a linear mixture of latent, temporally uncorrelated time series with some components pure white noise. To avoid the modelling of noise, we extract the non-noise latent components using some standard method, allowing the modelling of the extracted univariate time series individually. An important question is the determination of which of the latent components are of interest in modelling and which can be considered as noise. Bootstrap-based methods have recently been used in determining the latent dimension in various methods of unsupervised and supervised dimension reduction and we propose a set of similar estimation strategies for second-order stationary time series. Simulation studies and a sound wave example are used to show the method’s effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, A.C., Sutherland, M.T., McKinney, C.J.: Validation of SOBI components from high-density EEG. Neuroimage 25(2), 539–553 (2005)

    Article  Google Scholar 

  2. Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, Heidelberg (2005)

    Book  Google Scholar 

  3. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press (2010)

    Google Scholar 

  4. Blanchard, G., Kawanabe, M., Sugiyama, M., Spokoiny, V., Müller, K.R.: In search of non-Gaussian components of a high-dimensional distribution. J. Mach. Learn. Res. 7, 247–282 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Nordhausen, K., Oja, H., Tyler, D.: Asymptotic and bootstrap tests for subspace dimension (2017). https://arxiv.org/abs/1611.04908v2

  6. Nordhausen, K., Oja, H., Tyler, D., Virta, J.: Asymptotic and bootstrap tests for the dimension of the non-Gaussian subspace. IEEE Sign. Process. Lett. 24(6), 887–891 (2017)

    Article  Google Scholar 

  7. Matilainen, M., Croux, C., Nordhausen, K., Oja, H.: Supervised dimension reduction for multivariate time series. Econom. Stat. 4, 57–69 (2017)

    Article  MathSciNet  Google Scholar 

  8. Jolliffe, I.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  9. Nordhausen, K., Virta, J.: Ladle estimator for time series signal dimension. In: Proceedings of IEEE Statistical Signal Processing Workshop 2018, IEEE SSP 2018. (2018, To appear)

    Google Scholar 

  10. Luo, W., Li, B.: Combining eigenvalues and variation of eigenvectors for order determination. Biometrika 103(4), 875–887 (2016)

    Article  MathSciNet  Google Scholar 

  11. Tong, L., Soon, V., Huang, Y., Liu, R.: AMUSE: A new blind identification algorithm. In: Proceedings of IEEE International Symposium on Circuits and Systems, IEEE, pp. 1784–1787 (1990)

    Google Scholar 

  12. Belouchrani, A., Abed Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique based on second order statistics. IEEE Trans. Sign. Process. 45, 434–444 (1997)

    Article  Google Scholar 

  13. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEE Proc. F 140(6), 362–370 (1993)

    Google Scholar 

  14. Miettinen, J., Taskinen, S., Nordhausen, K., Oja, H.: Fourth moments and independent component analysis. Stat. Sci. 30, 372–390 (2015)

    Article  MathSciNet  Google Scholar 

  15. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  Google Scholar 

  16. Clarkson, D.B.: Remark AS R74: A least squares version of algorithm AS 211: The F-G diagonalization algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 37(2), 317–321 (1988)

    Google Scholar 

  17. Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S.: Statistical properties of a blind source separation estimator for stationary time series. Stat. Probab. Lett. 82, 1865–1873 (2012)

    Article  MathSciNet  Google Scholar 

  18. Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S.: Deflation-based separation of uncorrelated stationary time series. J. Multivar. Anal. 123, 214–227 (2014)

    Article  MathSciNet  Google Scholar 

  19. Illner, K., Miettinen, J., Fuchs, C., Taskinen, S., Nordhausen, K., Oja, H., Theis, F.J.: Model selection using limiting distributions of second-order blind source separation algorithms. Sign. Process. 113, 95–103 (2015)

    Article  Google Scholar 

  20. Miettinen, J., Illner, K., Nordhausen, K., Oja, H., Taskinen, S., Theis, F.: Separation of uncorrelated stationary time series using autocovariance matrices. J. Time Ser. Anal. 37(3), 337–354 (2016)

    Article  MathSciNet  Google Scholar 

  21. Taskinen, S., Miettinen, J., Nordhausen, K.: A more efficient second order blind identification method for separation of uncorrelated stationary time series. Stat. Probab. Lett. 116, 21–26 (2016)

    Article  MathSciNet  Google Scholar 

  22. Hall, P., Wilson, S.R.: Two guidelines for bootstrap hypothesis testing. Biometrics, 757–762 (1991)

    Article  MathSciNet  Google Scholar 

  23. Miettinen, J., Nordhausen, K., Taskinen, S.: Blind source separation based on joint diagonalization in R: the packages JADE and BSSasymp. J. Stat. Softw. 76(2), 1–31 (2017)

    Article  Google Scholar 

  24. Lahiri, S.: Resampling Methods for Dependent Data. Springer, New York (2003)

    Book  Google Scholar 

Download references

Acknowledgements

The work of KN was supported by the CRoNoS COST Action IC1408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joni Virta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matilainen, M., Nordhausen, K., Virta, J. (2018). On the Number of Signals in Multivariate Time Series. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics