Abstract
We assume a second-order source separation model where the observed multivariate time series is a linear mixture of latent, temporally uncorrelated time series with some components pure white noise. To avoid the modelling of noise, we extract the non-noise latent components using some standard method, allowing the modelling of the extracted univariate time series individually. An important question is the determination of which of the latent components are of interest in modelling and which can be considered as noise. Bootstrap-based methods have recently been used in determining the latent dimension in various methods of unsupervised and supervised dimension reduction and we propose a set of similar estimation strategies for second-order stationary time series. Simulation studies and a sound wave example are used to show the method’s effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tang, A.C., Sutherland, M.T., McKinney, C.J.: Validation of SOBI components from high-density EEG. Neuroimage 25(2), 539–553 (2005)
Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, Heidelberg (2005)
Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press (2010)
Blanchard, G., Kawanabe, M., Sugiyama, M., Spokoiny, V., Müller, K.R.: In search of non-Gaussian components of a high-dimensional distribution. J. Mach. Learn. Res. 7, 247–282 (2006)
Nordhausen, K., Oja, H., Tyler, D.: Asymptotic and bootstrap tests for subspace dimension (2017). https://arxiv.org/abs/1611.04908v2
Nordhausen, K., Oja, H., Tyler, D., Virta, J.: Asymptotic and bootstrap tests for the dimension of the non-Gaussian subspace. IEEE Sign. Process. Lett. 24(6), 887–891 (2017)
Matilainen, M., Croux, C., Nordhausen, K., Oja, H.: Supervised dimension reduction for multivariate time series. Econom. Stat. 4, 57–69 (2017)
Jolliffe, I.: Principal Component Analysis. Springer, New York (2002)
Nordhausen, K., Virta, J.: Ladle estimator for time series signal dimension. In: Proceedings of IEEE Statistical Signal Processing Workshop 2018, IEEE SSP 2018. (2018, To appear)
Luo, W., Li, B.: Combining eigenvalues and variation of eigenvectors for order determination. Biometrika 103(4), 875–887 (2016)
Tong, L., Soon, V., Huang, Y., Liu, R.: AMUSE: A new blind identification algorithm. In: Proceedings of IEEE International Symposium on Circuits and Systems, IEEE, pp. 1784–1787 (1990)
Belouchrani, A., Abed Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique based on second order statistics. IEEE Trans. Sign. Process. 45, 434–444 (1997)
Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEE Proc. F 140(6), 362–370 (1993)
Miettinen, J., Taskinen, S., Nordhausen, K., Oja, H.: Fourth moments and independent component analysis. Stat. Sci. 30, 372–390 (2015)
Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)
Clarkson, D.B.: Remark AS R74: A least squares version of algorithm AS 211: The F-G diagonalization algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 37(2), 317–321 (1988)
Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S.: Statistical properties of a blind source separation estimator for stationary time series. Stat. Probab. Lett. 82, 1865–1873 (2012)
Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S.: Deflation-based separation of uncorrelated stationary time series. J. Multivar. Anal. 123, 214–227 (2014)
Illner, K., Miettinen, J., Fuchs, C., Taskinen, S., Nordhausen, K., Oja, H., Theis, F.J.: Model selection using limiting distributions of second-order blind source separation algorithms. Sign. Process. 113, 95–103 (2015)
Miettinen, J., Illner, K., Nordhausen, K., Oja, H., Taskinen, S., Theis, F.: Separation of uncorrelated stationary time series using autocovariance matrices. J. Time Ser. Anal. 37(3), 337–354 (2016)
Taskinen, S., Miettinen, J., Nordhausen, K.: A more efficient second order blind identification method for separation of uncorrelated stationary time series. Stat. Probab. Lett. 116, 21–26 (2016)
Hall, P., Wilson, S.R.: Two guidelines for bootstrap hypothesis testing. Biometrics, 757–762 (1991)
Miettinen, J., Nordhausen, K., Taskinen, S.: Blind source separation based on joint diagonalization in R: the packages JADE and BSSasymp. J. Stat. Softw. 76(2), 1–31 (2017)
Lahiri, S.: Resampling Methods for Dependent Data. Springer, New York (2003)
Acknowledgements
The work of KN was supported by the CRoNoS COST Action IC1408.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Matilainen, M., Nordhausen, K., Virta, J. (2018). On the Number of Signals in Multivariate Time Series. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-93764-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93763-2
Online ISBN: 978-3-319-93764-9
eBook Packages: Computer ScienceComputer Science (R0)